Equid herpesvirus 8 (EHV-8), formerly known as asinine herpesvirus 3, is an alphaherpesvirus that is closely related to equid herpesviruses 1 and 9 (EHV-1 and EHV-9). The pathogenesis of EHV-8 is relatively little studied and to date has only been associated with respiratory disease in donkeys in Australia and horses in China. A single EHV-8 genome sequence has been generated for strain Wh in China, but is apparently incomplete and contains frameshifts in two genes. In this study, the complete genome sequences of four EHV-8 strains isolated in Ireland between 2003 and 2015 were determined by Illumina sequencing. Two of these strains were isolated from cases of abortion in horses, and were misdiagnosed initially as EHV-1, and two were isolated from donkeys, one with neurological disease. The four genome sequences are very similar to each other, exhibiting greater than 98.4% nucleotide identity, and their phylogenetic clustering together demonstrated that genomic diversity is not dependent on the host. Comparative genomic analysis revealed 24 of the 76 predicted protein sequences are completely conserved among the Irish EHV-8 strains. Evolutionary comparisons indicate that EHV-8 is phylogenetically closer to EHV-9 than it is to EHV-1. In summary, the first complete genome sequences of EHV-8 isolates from two host species over a twelve year period are reported. The current study suggests that EHV-8 can cause abortion in horses. The potential threat of EHV-8 to the horse industry and the possibility that donkeys may act as reservoirs of infection warrant further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802896PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192301PLOS

Publication Analysis

Top Keywords

complete genome
12
genome sequences
12
ehv-8
9
equid herpesvirus
8
genome sequence
8
sequences ehv-8
8
ehv-8 strains
8
strains isolated
8
abortion horses
8
genome
5

Similar Publications

A new capulavirus infecting sugar beet (Beta vulgaris L.) in France.

Arch Virol

January 2025

Univ. Bordeaux, INRAE, UMR 1332 Biologie du Fruit et Pathologie, CS20032, 33882, Villenave d'Ornon Cedex, France.

A novel capulavirus was identified by high-throughput sequencing in four sugar beet (Beta vulgaris L.) plants collected in April 2023 in Normandy (France). The complete genome of 2744 nucleotides (nt) was sequenced and found to have an organization similar to that of known capulaviruses, with which it showed close phylogenetic relationships.

View Article and Find Full Text PDF

Transitions across ecological boundaries, such as those separating freshwater from the sea, are major drivers of phenotypic innovation and biodiversity. Despite their importance to evolutionary history, we know little about the mechanisms by which such transitions are accomplished. To help shed light on these mechanisms, we generated the first high-quality, near-complete assembly and annotation of the genome of the American shad (Alosa sapidissima), an ancestrally diadromous (migratory between salinities) fish in the order Clupeiformes of major cultural and historical significance.

View Article and Find Full Text PDF

Quantitative imaging of loop extruders rebuilding interphase genome architecture after mitosis.

J Cell Biol

March 2025

Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL) , Heidelberg, Germany.

How cells establish the interphase genome organization after mitosis is incompletely understood. Using quantitative and super-resolution microscopy, we show that the transition from a Condensin to a Cohesin-based genome organization occurs dynamically over 2 h. While a significant fraction of Condensins remains chromatin-bound until early G1, Cohesin-STAG1 and its boundary factor CTCF are rapidly imported into daughter nuclei in telophase, immediately bind chromosomes as individual complexes, and are sufficient to build the first interphase TAD structures.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, USA.

Background: The mitochondrial cascade hypothesis suggests that mitochondrial dysfunction plays an important role in the pathogenesis of Alzheimer's disease dementia. Recent data have shown that mitochondrial DNA copy number (mtDNAcn) in human blood is associated with dementia risk and cognitive function, but which specific cognitive measures or domains are associated with mitochondrial dysfunction and whether this relationship is affected by health deterioration such as physical frailty or mitochondrial somatic mutations is not clear.

Methods: We measured mtDNAcn and heteroplasmies using fastMitoCalc and MitoCaller, respectively, from UK Biobank Whole Genome Sequencing (WGS) data at study entry (2006-2010).

View Article and Find Full Text PDF

Background: The identification of novel blood-based biomarkers of small vessel disease of the brain (SVD) may improve pathophysiologic understanding and inform the development of new therapeutic strategies for prevention. We evaluated plasma proteomic associations of white matter fractional anisotropy (WMFA), white matter hyperintensity (WMH) volume, enlarged perivascular space (ePVS) volume, and the presence of microbleeds (MB) on brain magnetic resonance imaging (MRI) in the population-based Multi-Ethnic Study of Atherosclerosis (MESA).

Methods: Eligible MESA participants had 2941 plasma proteins measured from stored blood samples (collected in 2016-2018) using the antibody-based Olink proteomics platform, and completed brain MRI scans in 2018-2019.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!