Using ab initio calculation coupled with the bond-order-length-strength (BOLS) approximation, we investigate the configurations and electronic properties of (, )-graphyne nanoribbons (GYNRs) with armchair (AGYNRs) and zigzag (ZGYNRs) edges. Our investigation shows that the armchair-edged -GYNRs and all -GYNRs are semiconductors with suitable band-gaps, and that their band-gaps increase as the widths of nanoribbons decrease; on the other hand, zigzag-edged -GYNRs appear to be zero-band-gap materials. Observation results suggest that (i) atomic undercoordination shortens and stiffens the C-C bond, which contributes to the Hamiltonian and hence widens the band-gap intrinsically; (ii) zigzag-edged -GYNRs lack a band-gap due to the edge-undercoordinated atoms lacking the energy to open the -graphyne gap; and (iii) the edge-undercoordination of atoms occurs during charge entrapment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853724 | PMC |
http://dx.doi.org/10.3390/nano8020092 | DOI Listing |
Nanomaterials (Basel)
February 2018
Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
Using ab initio calculation coupled with the bond-order-length-strength (BOLS) approximation, we investigate the configurations and electronic properties of (, )-graphyne nanoribbons (GYNRs) with armchair (AGYNRs) and zigzag (ZGYNRs) edges. Our investigation shows that the armchair-edged -GYNRs and all -GYNRs are semiconductors with suitable band-gaps, and that their band-gaps increase as the widths of nanoribbons decrease; on the other hand, zigzag-edged -GYNRs appear to be zero-band-gap materials. Observation results suggest that (i) atomic undercoordination shortens and stiffens the C-C bond, which contributes to the Hamiltonian and hence widens the band-gap intrinsically; (ii) zigzag-edged -GYNRs lack a band-gap due to the edge-undercoordinated atoms lacking the energy to open the -graphyne gap; and (iii) the edge-undercoordination of atoms occurs during charge entrapment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!