A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Coenzyme M biosynthesis in bacteria involves phosphate elimination by a functionally distinct member of the aspartase/fumarase superfamily. | LitMetric

AI Article Synopsis

  • Coenzyme M (CoM) was previously thought to only exist in methanogenic archaea, but recent findings showed its role in bacterial propene metabolism, leading to the identification of potential CoM biosynthetic enzymes in the bacterium Py2.
  • The study highlighted four putative enzymes linked to CoM production, with only one showing similarity to already known archeal counterparts, suggesting a distinct biosynthetic process in bacteria.
  • Key enzymatic activities were confirmed, illustrating the initial steps of CoM biosynthesis in bacteria and paving the way for further understanding of this metabolic pathway.

Article Abstract

For nearly 30 years, coenzyme M (CoM) was assumed to be present solely in methanogenic archaea. In the late 1990s, CoM was reported to play a role in bacterial propene metabolism, but no biosynthetic pathway for CoM has yet been identified in bacteria. Here, using bioinformatics and proteomic approaches in the metabolically versatile bacterium Py2, we identified four putative CoM biosynthetic enzymes encoded by the , , , and genes. Only XcbB1 was homologous to a known CoM biosynthetic enzyme (ComA), indicating that CoM biosynthesis in bacteria involves enzymes different from those in archaea. We verified that the ComA homolog produces phosphosulfolactate from phosphoenolpyruvate (PEP), demonstrating that bacterial CoM biosynthesis is initiated similarly as the phosphoenolpyruvate-dependent methanogenic archaeal pathway. The bioinformatics analysis revealed that XcbC1 and D1 are members of the aspartase/fumarase superfamily (AFS) and that XcbE1 is a pyridoxal 5'-phosphate-containing enzyme with homology to d-cysteine desulfhydrases. Known AFS members catalyze β-elimination reactions of succinyl-containing substrates, yielding fumarate as the common unsaturated elimination product. Unexpectedly, we found that XcbC1 catalyzes β-elimination on phosphosulfolactate, yielding inorganic phosphate and a novel metabolite, sulfoacrylic acid. Phosphate-releasing β-elimination reactions are unprecedented among the AFS, indicating that XcbC1 is an unusual phosphatase. Direct demonstration of phosphosulfolactate synthase activity for XcbB1 and phosphate β-elimination activity for XcbC1 strengthened their hypothetical assignment to a CoM biosynthetic pathway and suggested functions also for XcbD1 and E1. Our results represent a critical first step toward elucidating the CoM pathway in bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892593PMC
http://dx.doi.org/10.1074/jbc.RA117.001234DOI Listing

Publication Analysis

Top Keywords

biosynthesis bacteria
8
bacteria involves
8
aspartase/fumarase superfamily
8
biosynthetic pathway
8
β-elimination reactions
8
coenzyme biosynthesis
4
bacteria
4
involves phosphate
4
phosphate elimination
4
elimination functionally
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!