The present study was designed to investigate the possible protective effects of fraxetin against ethanol induced liver fibrosis in rats. Rats were underwent intragastric administration of ethanol (5.0-9.5 g/kg) once a day for 24 weeks. Effect of fraxetin against ethanol induced liver fibrosis was investigated by giving 20 or 50 mg/kg fraxetin. At the end of experiment, the livers were collected for histopathological analyses, protein extraction, and enzymatic activities. Our results indicated that fraxetin significantly corrected ethanol-induced hepatic fibrosis, as evidenced by the decrease in serum ALT and AST, the attenuation of histopathological changes. Fraxetin also expedited ethanol metabolism by enhancing the alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activities. Besides, fraxetin alleviated lipid peroxidation, enhanced hepatic antioxidant capabilities, inhibited CYP2E1 activity, and reduced the inflammatory mediators, including TNF-α and IL-1β via up-regulation of hemeoxygenase-1 (HO-1) protein. In summary, the hepatoprotection of fraxetin is mostly attributed to its antioxidant capability, alcohol metabolism, and anti-inflammation effect.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2018.01.027DOI Listing

Publication Analysis

Top Keywords

ethanol-induced hepatic
8
hepatic fibrosis
8
ethanol metabolism
8
inflammatory mediators
8
fraxetin ethanol
8
ethanol induced
8
induced liver
8
liver fibrosis
8
fraxetin
7
ethanol
5

Similar Publications

Sirtuin 7 Promotes Alcohol-Associated Liver Injury via Modulating Myeloid Cell Chemokine (C-C Motif) Ligand 2 Secretion through the NF-κB Signaling Pathway.

Am J Pathol

December 2024

The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China. Electronic address:

Article Synopsis
  • The progression of Alcohol-associated liver disease (ALD) involves increased gut permeability due to ethanol, leading to bacterial products entering the bloodstream and causing liver inflammation and damage.
  • The study used mice without the SIRT7 gene in myeloid cells, finding that this knockout reduced liver injury and inflammation caused by alcohol while minimally impacting lipid metabolism.
  • Identification of CCL2 as a key target affected by SIRT7 highlights how its knockout hinders macrophage CCL2 secretion and monocyte recruitment, suggesting that targeting SIRT7 could provide new treatment strategies for ALD.
View Article and Find Full Text PDF

Background And Aims: Alcohol-associated liver disease (ALD) is a leading cause of liver-related mortality worldwide, with limited treatment options beyond abstinence and liver transplantation. Chronic alcohol consumption has been linked to magnesium (Mg 2+ ) deficiency, which can influence liver disease progression. The mechanisms underlying Mg 2+ homeostasis dysregulation in ALD remain elusive.

View Article and Find Full Text PDF

Alcoholic Extracts from the Ganoderma Lucidum Fermentation Product Alleviated Ethanol-Induced Liver Injury, Gut Leakiness, and Gut Dysbiosis in Mice.

Plant Foods Hum Nutr

December 2024

Liaoning Key Laboratory of Food Nutrition and Health, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.

The hepatoprotective effect of the alcoholic extracts of Ganoderma lucidum fermentation products (GFE) was investigated. C57BL/6 mice were pretreated with GFE for 7 days and then subjected to the chronic-binge ethanol feeding model. GFE pretreatment significantly reduced the ethanol-induced elevated serum levels of aspartate aminotransferase (AST) and alanine transaminase (ALT), hepatic steatosis, and increased triglyceride content.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how alcohol affects liver health by disrupting mitochondrial function and energy metabolism, focusing on inflammation and oxidative stress in Kupffer cells (liver macrophages).
  • Researchers experimented with nicotinamide riboside (NR), a compound that may help counteract damage caused by ethanol exposure in these cells, showing that NR can improve mitochondrial function and reduce inflammation.
  • The findings suggest that NR works by regulating a specific protein (ATF5) involved in the mitochondrial unfolded protein response (UPR), indicating its potential as a treatment for alcohol-related liver disease (ALD).
View Article and Find Full Text PDF

Background: Dichloroacetate (DCA), a pan-pyruvate dehydrogenase kinase inhibitor, ameliorates multiple pathological conditions and tissue injury and shows strong potential for clinical applications. Here, we investigated the preventive effects of DCA in a murine model of alcohol-associated liver disease.

Methods: C57BL/6J mice were subjected to the acute-on-chronic model of alcohol-associated liver disease and treated with DCA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!