Highly selective and sensitive turn-on fluorescent sensor for detection of Al based on quinoline-base Schiff base.

Spectrochim Acta A Mol Biomol Spectrosc

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China. Electronic address:

Published: April 2018

A new aluminum ion fluorescent probe (4-(diethylamino)-2-hydroxybenzylidene)isoquinoline-1-carbohydrazide (HL) has been conveniently synthesized and characterized. HL exhibited a highly selective and pronounced enhancement for Al in the fluorescence emission over other common cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT). The strong fluorescent emission can be observed even at ppm level concentration of the probe in the presence of Al with 41 fold intensity enhancement at 545 nm. HL displays good linear relationship with Al in the low concentration and the limit of detection is 8.08 × 10 mol/L. Similar molecules with different substituents on salicylaldehyde phenyl ring were synthesized for studying the structure-activity relationship. Density-functional theory (DFT) calculations are in agreement with the proposed mechanism. It is confirmed that HL could be used to detect Al ions in real sample by fluorescence spectrometry and Al ions in cells by bioimaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2018.01.049DOI Listing

Publication Analysis

Top Keywords

highly selective
8
selective sensitive
4
sensitive turn-on
4
turn-on fluorescent
4
fluorescent sensor
4
sensor detection
4
detection based
4
based quinoline-base
4
quinoline-base schiff
4
schiff base
4

Similar Publications

This study reports on the development of a highly sensitive non-enzymatic electrochemical sensor based on a two-dimensional TiCT/MWCNT-OH nanocomposite for the detection of paraoxon-based pesticide. The synergistic effect between the TiCT nanosheet and the functionalized multi-walled carbon nanotubes enhanced the sensor's conductivity and catalytic activity. The nanocomposite demonstrates superior electrochemical and electroanalytical performance compared to the pristine TiCT and MWCNT-OH in detecting paraoxon-ethyl in fruit samples (green and red grapes), with a linear response range from 0.

View Article and Find Full Text PDF

A novel ubiquitination-related gene signature for overall survival prediction in patients with liver hepatocellular carcinoma.

Discov Oncol

January 2025

Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.

Liver hepatocellular carcinoma (LIHC) is a highly heterogeneous disease, necessitating the discovery of novel biomarkers to enhance individualized treatment approaches. Recent research has shown the significant involvement of ubiquitin-related genes (UbRGs) in the progression of LIHC. However, the prognostic value of UbRGs in LIHC has not been investigated.

View Article and Find Full Text PDF

Graphical Model Selection to Infer the Partial Correlation Network of Allelic Effects in Genomic Prediction With an Application in Dairy Cattle.

J Anim Breed Genet

January 2025

Departamento de Ciencias Agrícolas y Pecuarias, Universidad Francisco de Paula Santander, Cúcuta, Colombia.

We addressed genomic prediction accounting for partial correlation of marker effects, which entails the estimation of the partial correlation network/graph (PCN) and the precision matrix of an unobservable m-dimensional random variable. To this end, we developed a set of statistical models and methods by extending the canonical model selection problem in Gaussian concentration, and directed acyclic graph models. Our frequentist formulations combined existing methods with the EM algorithm and were termed Glasso-EM, Concord-EM and CSCS-EM, whereas our Bayesian formulations corresponded to hierarchical models termed Bayes G-Sel and Bayes DAG-Sel.

View Article and Find Full Text PDF

This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.

View Article and Find Full Text PDF

Gemcitabine (GEM) is a first line chemotherapy drug for bladder cancer (BCa). GEM's lack of specificity has led to disadvantages, resulting in low efficiency, especially when combined with the targeted treatment of BCa stem cells (CSCs), which is considered the cause of BCa recurrence and progression. To enhance the anti-cancer effect and reduce the side effects of GEM targeting of BCa cells/CSCs, an aptamer drug conjugate (ApDC) targeted delivery system was used to improve the efficiency of GEM in BCa therapy using EpCAM aptamer-GEM conjugates based on the epithelial cell adhesion molecule (EpCAM), which is highly expressed on the cell membrane of BCa cells/CSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!