Rett Syndrome is a neurodevelopmental disorder caused primarily by mutations in the gene encoding Methyl-CpG-binding protein 2 (MECP2). Spontaneous epileptiform activity is a common co-morbidity present in Rett syndrome, and hyper-excitable neural networks are present in MeCP2-deficient mouse models of Rett syndrome. In this study we conducted a longitudinal assessment of spontaneous cortical electrographic discharges in female MeCP2-deficient mice and defined the pharmacological responsiveness of these discharges to anti-convulsant drugs. Our data show that cortical discharge activity in female MeCP2-deficient mice progressively increases in severity as the mice age, with discharges being more frequent and of longer durations at 19-24 months of age compared to 3 months of age. Semiologically and pharmacologically, this basal discharge activity in female MeCP2-deficient mice displayed electroclinical properties consistent with absence epilepsy. Only rarely were convulsive seizures observed in these mice at any age. Since absence epilepsy is infrequently observed in Rett syndrome patients, these results indicate that the predominant spontaneous electroclinical phenotype of MeCP2-deficient mice we examined does not faithfully recapitulate the most prevalent seizure types observed in affected patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2018.01.015 | DOI Listing |
EMBO Mol Med
November 2024
Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Loss-of-function mutations in MECP2 are associated to Rett syndrome (RTT), a severe neurodevelopmental disease. Mainly working as a transcriptional regulator, MeCP2 absence leads to gene expression perturbations resulting in deficits of synaptic function and neuronal activity. In addition, RTT patients and mouse models suffer from a complex metabolic syndrome, suggesting that related cellular pathways might contribute to neuropathogenesis.
View Article and Find Full Text PDFEMBO Mol Med
December 2024
Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, Milan, I-20054, Italy.
The beneficial effects of Neural Precursor Cell (NPC) transplantation in several neurological disorders are well established and they are generally mediated by the secretion of immunomodulatory and neurotrophic molecules. We therefore investigated whether Rett syndrome (RTT), that represents the first cause of severe intellectual disability in girls, might benefit from NPC-based therapy. Using in vitro co-cultures, we demonstrate that, by sensing the pathological context, NPC-secreted factors induce the recovery of morphological and synaptic defects typical of Mecp2 deficient neurons.
View Article and Find Full Text PDFBrain
September 2024
Neuroscience Division, IRCCS San Raffaele Scientific Institute, Milan, I-20132, Italy.
eNeuro
September 2024
Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037
Rett syndrome (RTT), a severe neurodevelopmental disorder caused by mutations in the MeCP2 gene, is characterized by cognitive and social deficits. Previous studies have noted hypoactivity in the medial prefrontal cortex (mPFC) pyramidal neurons of MeCP2-deficient mice (RTT mice) in response to both social and nonsocial stimuli. To further understand the neural mechanisms behind the social deficits of RTT mice, we monitored excitatory pyramidal neurons in the prelimbic region of the mPFC during social interactions in mice.
View Article and Find Full Text PDFPharmaceutics
June 2024
TIDU GENOV, Institut du Cerveau, ICM, F-75013 Paris, France.
Rett syndrome (RTT) is a rare neurodevelopmental disorder caused by mutation in the X-linked gene methyl-CpG-binding protein 2 (Mecp2), a ubiquitously expressed transcriptional regulator. RTT results in mental retardation and developmental regression that affects approximately 1 in 10,000 females. Currently, there is no curative treatment for RTT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!