Human plasma retinol-binding protein (RBP4) is also a fatty acid-binding protein.

Biochim Biophys Acta Mol Cell Biol Lipids

Biocrystallography Laboratory, Department of Biotechnology, University of Verona, Ca Vignal 1, strada Le Grazie 15, 37134 Verona, Italy. Electronic address:

Published: April 2018

RBP4 (plasma retinol-binding protein) is the 21 kDa transporter of all-trans retinol that circulates in plasma as a moderately tight 1:1 molar complex of the vitamin with the protein. RBP4 is primarily synthesized in the liver but is also produced by adipose tissue and circulates bound to a larger protein, transthyretin, TTR, that serves to increase its molecular mass and thus avoid its elimination by glomerular filtration. This paper reports the high resolution three-dimensional structures of human RBP4 naturally lacking bound retinol purified from plasma, urine and amniotic fluid. In all these crystals we found a fatty acid molecule bound in the hydrophobic ligand-binding site, a result confirmed by mass spectrometry measurements. In addition we also report the 1.5 Å resolution structures of human holo-RBP4 and of the protein saturated with palmitic and lauric acid and discuss the interaction of the fatty acids and retinol with the protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbalip.2018.01.010DOI Listing

Publication Analysis

Top Keywords

protein rbp4
12
plasma retinol-binding
8
retinol-binding protein
8
structures human
8
protein
7
human plasma
4
rbp4
4
rbp4 fatty
4
fatty acid-binding
4
acid-binding protein
4

Similar Publications

Retinoids and retinoid-binding proteins: Unexpected roles in metabolic disease.

Curr Top Dev Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, OH, United States.

Alterations in tissue expression levels of both retinol-binding protein 2 (RBP2) and retinol-binding protein 4 (RBP4) have been associated with metabolic disease, specifically with obesity, glucose intolerance and hepatic steatosis. Our laboratories have shown that this involves novel pathways not previously considered as possible linkages between impaired retinoid metabolism and metabolic disease development. We have established both biochemically and structurally that RBP2 binds with very high affinity to very long-chain unsaturated 2-monoacylglycerols like the canonical endocannabinoid 2-arachidonoyl glycerol (2-AG) and other endocannabinoid-like substances.

View Article and Find Full Text PDF

Blood carries some of the most valuable biomarkers for disease screening as it interacts with various tissues and organs in the body. Human blood serum is a reservoir of high molecular weight fraction (HMWF) and low molecular weight fraction (LMWF) proteins. The LMWF proteins are considered disease marker proteins and are often suppressed by HMWF proteins during analysis.

View Article and Find Full Text PDF

Introduction: Antiretroviral therapy (ART) increases the life expectancy of persons living with HIV (PLWH), but not without potentially serious adverse effects. Tenofovir disoproxil fumarate (TDF) can cause nephrotoxicity, manifesting as acute kidney injury (AKI) that may persist after treatment discontinuation. Kidney injury biomarkers such as kidney injury molecule-1 (KIM-1), retinol-binding protein-4 (RBP-4), interleukin-18 (IL-18), and neutrophil gelatinase-associated lipocalin (NGAL) can aid early diagnosis and predict TDF-associated nephrotoxicity.

View Article and Find Full Text PDF

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, is characterized by mitochondrial dysfunction and immune dysregulation. This study is aimed at developing a risk prediction model for AD by integrating multi-omics data and exploring the interplay between mitochondrial energy metabolism-related genes (MEMRGs) and immune cell dynamics. We integrated four GEO datasets (GSE132903, GSE29378, GSE33000, GSE5281) for differential gene expression analysis, functional enrichment, and weighted gene co-expression network analysis (WGCNA).

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are a superfamily of transmembrane proteins that initiate signaling cascades through activation of its G protein upon association with its ligand. In all mammalian vision, rhodopsin is the GPCR responsible for the initiation of the phototransduction cascade. Within photoreceptors, rhodopsin is bound to its chromophore 11-cis-retinal and is activated through the light-sensitive isomerization of 11-cis-retinal to all-trans-retinal, which activates the transducin G protein, resulting in the phototransduction cascade.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!