A highly sensitive electrochemical sensor using a carbon paste electrode (CPE) modified with surface molecularly imprinted polymeric microspheres (SMIPMs) was developed for methyl parathion (MP) detection. Molecular imprinting technique based on distillation precipitation polymerization was applied to prepare SMIPMs and non-surface imprinted microspheres (MIPMs). The polymer properties including morphology, size distribution, BET specific surface area and adsorption performance were investigated and compared carefully. Both MIPMs and SMIPMs were adopted to prepare CPE sensors and their electrochemical behaviors were characterized via cyclic voltammetry and electrochemical impedance spectroscopy. Compared with MIPMs packed sensor, SMIPMs/CPE exhibits a higher sensing response towards MP with linear detection range of 1 × 10-8 × 10 mol L and detection limit of 3.4 × 10 mol L (S/N = 3). Moreover, SMIPMs/CPE exhibits good selectivity and stability in multiple-cycle usage and after long-time storage. Finally, the developed sensor was used to determine MP in real samples including soil and vegetables and only simple pretreatment is needed. The detection results were consistent with those obtained from liquid chromatography. Collectively, this newly developed sensor system shows significant potential for use in a variety of fields like food safety, drug residue determination and environmental monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2018.01.057 | DOI Listing |
Materials (Basel)
January 2025
Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 18. Stefanowskiego Str., 90-924 Lodz, Poland.
Toxic materials are a threat in workplaces and the environment, as well as households. In them, gaseous substances are included, especially ones without any colour or fragrance, due to their non-detectability with the human senses. In this article, an attempt was made to find a solution for its detection in various conditions with the use of intelligent textiles.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Instituto Universitario de Investigación de Ciencia y Tecnología del Hormigón (ICITECH), Universitat Politècnica de València, 46022 Valencia, Spain.
LC3 (limestone calcined clay cement) is poised to become the construction industry's future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin.
View Article and Find Full Text PDFBiomedicines
January 2025
I-MVET Research in Veterinary Medicine, Faculty of Veterinary Medicine, Lusófona University-Lisbon University Centre, 1749-024 Lisbon, Portugal.
Promoting rapid healing is a concern in skin wound treatment, as the increased pain and the loss of functional ability when wounds become chronic create a complex problem to manage. This scoping review aimed to explore the literature and synthesize existing knowledge on the therapeutic use of CO in treating cutaneous wounds. The literature was selected using previously defined inclusion and exclusion criteria, and 22 articles were selected for data extraction.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Concrete Structures and Building Materials, Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany.
This paper investigates the impact of varying humidity conditions on the carbonation depth in hardened cement paste using a 3-dimensional microscale kinetic Monte Carlo (kMC) approach. The kMC algorithm effectively simulates the carbonation process by capturing the interplay between CO diffusion and relative humidity at the microscale, providing insights into macro trends that align with historical models. The study reveals that the maximum carbonation depth is achieved at relative humidity levels between 55 and 65%, where the balance between water and CO diffusion is optimized.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Biofuel and Renewable Energy Research Center, Department of Biotechnology, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
Background: The buildup of methylparaben (MP), a broad-spectrum antimicrobial preservative with endocrine-disrupting properties, in environmental sources, especially aquatic systems, has become a significant concern due to its adverse health effects, including allergic reactions, promoting the risk of developing cancer, and inducing reproductive disorders. Hence, introducing inexpensive and easy-to-use monitoring devices for rapid, selective, and sensitive detection and quantification of MP is highly desirable. In this context, electrochemical platforms have proven to be attractive options due to their remarkable features, such as ease of fabrication and use, short response time, and acceptable sensitivity, accuracy, and selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!