A highly prospective drug for the X-ray induced photodynamic therapy (PDTX), LuAG:Pr@SiO-PpIX nanocomposite, was successfully prepared by a three step process: photo-induced precipitation of the LuAlO:Pr (LuAG:Pr) core, sol-gel technique for amorphous silica coating, and a biofunctionalization by attaching the protoporphyrin IX (PpIX) molecules. The synthesis procedure provides three-layer nanocomposite with uniform shells covering an intensely luminescent core. Room temperature radioluminescence (RT RL) spectra as well as photoluminescence (RT PL) steady-state and time resolved spectra of the material confirm the non-radiative energy transfer from the core Pr ions to the PpIX outer layer. First, excitation of Pr ions results in the red luminescence of PpIX. Second, the decay measurements exhibit clear evidence of mentioned non-radiative energy transfer (ET). The singlet oxygen generation in the system was demonstrated by the 3'-(p-aminophenyl) fluorescein (APF) chemical probe sensitive to the singlet oxygen presence. The RT PL spectra of an X-ray irradiated material with the APF probe manifest the formation of singlet oxygen due to which enhanced luminescence around 530 nm is observed. Quenching studies, using NaN as an O inhibitor, also confirm the presence of O in the system and rule out the parasitic reaction with OH radicals. To summarize, presented features of LuAG:Pr@SiO-PpIX nanocomposite indicate its considerable potential for PDTX application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2018.01.015DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
16
luagpr@sio-ppix nanocomposite
8
non-radiative energy
8
energy transfer
8
luagpr-porphyrin based
4
based nanohybrid
4
nanohybrid system
4
singlet
4
system singlet
4
oxygen
4

Similar Publications

Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.

Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.

View Article and Find Full Text PDF

Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.

View Article and Find Full Text PDF

Nanohybrids combining phenylboronic acid-modified carbon dots (PCDs) and proteinase K have been engineered for addressing the formidable challenges of antimicrobial photodynamic therapy (aPDT) against bacterial biofilm infections, overcoming biofilm barrier obstruction, the limited diffusion of reactive oxygen species (ROS), and the inadequate ROS generation of traditional photosensitizers. PCDs are formulated for superior water solubility and robust singlet oxygen (O) production, mitigating issues related to dispersion and aggregation-induced quenching typical of conventional photosensitizers. The conjugation of phenylboronic acid to CDs not only enhanced O generation through increased electron-hole separation but also imparted strong bacterial binding capabilities to the PCDs, enabling broad-spectrum sterilization by maximizing the ROS-mediated bacterial destruction.

View Article and Find Full Text PDF

Thiophene engineering of near-infrared D-π-A nano-photosensitizers for enhanced multiple phototheranostics and inhibition of tumor metastasis.

J Colloid Interface Sci

January 2025

Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China. Electronic address:

Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) is widely used for cancer treatment because of its non-invasiveness, spatiotemporal controllability, and low side effects. However, the PTT and PDT capabilities of photosensitizers (PSs) compete so it's still a crucial challenge to simultaneously enhance the PDT and PTT capabilities of PSs. In this work, donor-π-acceptor (D-π-A)-based boron dipyrromethene (BODIPY) dyes were developed via molecular engineering and applied for enhanced phototherapy of triple-negative breast cancer.

View Article and Find Full Text PDF

Photodynamic therapy combined with quaternized chitosan antibacterial strategy for instant and prolonged bacterial infection treatment.

Carbohydr Polym

March 2025

Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Drug-resistant bacterial infections represent a critical global public health challenge, driven largely by the misuse and overuse of antibiotics. Tackling the growing threat of bacterial resistance necessitates the development of innovative antibacterial agents that function independently of traditional antibiotics. In this study, novel antibacterial nano-micelles were rationally designed by conjugating quaternized chitosan with the photosensitizer chlorin e6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!