Macroautophagy is an intracellular pathway used for targeting of cellular components to the lysosome for their degradation and involves sequestration of cytoplasmic material into autophagosomes formed from a double membrane structure called the phagophore. The nucleation and elongation of the phagophore is tightly regulated by several autophagy-related (ATG) proteins, but also involves vesicular trafficking from different subcellular compartments to the forming autophagosome. Such trafficking must be tightly regulated by various intra- and extracellular signals to respond to different cellular stressors and metabolic states, as well as the nature of the cargo to become degraded. We are only starting to understand the interconnections between different membrane trafficking pathways and macroautophagy. This review will focus on the membrane trafficking machinery found to be involved in delivery of membrane, lipids, and proteins to the forming autophagosome and in the subsequent autophagosome fusion with endolysosomal membranes. The role of RAB proteins and their regulators, as well as coat proteins, vesicle tethers, and SNARE proteins in autophagosome biogenesis and maturation will be discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.ircmb.2017.07.001 | DOI Listing |
Biochim Biophys Acta Mol Cell Res
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Key Laboratory of Cancer Pathogenesis and Translation, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China. Electronic address:
The imbalance of microglial homeostasis is highly associated with age-related neurological diseases, where cytosolic endogenous DNA is also likely to be found. As the main medium for storing biological information, endogenous DNA could be localized to cellular compartments normally free of DNA when cells are stimulated. However, the intracellular trafficking of endogenous DNA remains unidentified.
View Article and Find Full Text PDFCurr Alzheimer Res
January 2025
Department of Neurology, The Second Affiliated Hospital of Xiamen Medical College, Fujian, 361000, China.
Introduction: Muscarinic 1 acetylcholine receptor (M1AChR) is a member of the Gprotein- coupled receptor superfamily, with the dysfunction being linked to the onset of Alzheimer's Disease (AD).
Aims: Retromer complex with Vacuolar Protein Sorting-35 (VPS35) as the core plays an important role in the transport of biological proteins and has been confirmed to be closely related to the pathogenesis of AD. This study was designed to determine whether VPS35 could affect the trafficking mechanism of M1AChRs.
Biol Cell
January 2025
CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), BIOLuM, University of Montpellier, CNRS UMR 5237, Montpellier, France.
Flotillin 1 and 2 are highly conserved and homologous members of the stomatin, prohibitin, flotillin, HflK/C (SPFH) family. These ubiquitous proteins assemble into hetero-oligomers at the cytoplasmic membrane in sphingolipid-enriched domains. Flotillins play crucial roles in various cellular processes, likely by concentrating sphingosine.
View Article and Find Full Text PDFPlant Physiol
January 2025
State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.
Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.
Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!