Abstract ID: 197 Monte Carlo simulations of X-ray grating interferometry based imaging systems.

Phys Med

Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.

Published: January 2018

Over the last couple of years the implementation of Monte Carlo (MC) methods of grating based imaging techniques is of increasing interest. Several different approaches were taken to include coherent effects into MC in order to simulate the radiation transport of the image forming procedure. These include full MC using FLUKA [1], which however are only considering monochromatic sources. Alternatively, ray-tracing based MC [2] allow fast simulations with the limitation to provide only qualitative results, i.e. this technique is not suitable for dose calculation in the imaged object. Finally, hybrid models [3] were used allowing quantitative results in reasonable computation time, however only two-dimensional implementations are available. Thus, this work aims to develop a full MC framework for X-ray grating interferometry imaging systems using polychromatic sources suitable for large-scale samples. For this purpose the EGSnrc C++ MC code system is extended to take Snell's law, the optical path length and Huygens principle into account. Thereby the EGSnrc library was modified, e.g. the complex index of refraction has to be assigned to each region depending on the material. The framework is setup to be user-friendly and robust with respect to future updates of the EGSnrc package. These implementations have to be tested using dedicated academic situations. Next steps include the validation by comparisons of measurements for different setups with the corresponding MC simulations. Furthermore, the newly developed implementation will be compared with other simulation approaches. This framework will then serve as bases for dose calculation on CT data and has further potential to investigate the image formation process in grating based imaging systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmp.2017.11.029DOI Listing

Publication Analysis

Top Keywords

based imaging
12
imaging systems
12
monte carlo
8
x-ray grating
8
grating interferometry
8
grating based
8
dose calculation
8
abstract 197
4
197 monte
4
carlo simulations
4

Similar Publications

Background: Classifying uterine fibroid using the International Federation of Gynecology and Obstetrics (FIGO) classification system assists treatment decision-making and planning. This study aimed to study whether different fibroid locations influence clinical outcomes following uterine artery embolization (UAE).

Methods: This is a retrospective cohort study of patients who underwent UAE for symptomatic uterine fibroid between December 2016 and January 2023 at our hospital.

View Article and Find Full Text PDF

Purpose: The positron range effect can impair PET image quality of Gallium-68 (Ga). A positron range correction (PRC) can be applied to reduce this effect. In this study, the effect of a tissue-independent PRC for Ga was investigated on patient data.

View Article and Find Full Text PDF

Automatic multimodal registration of cone-beam computed tomography and intraoral scans: a systematic review and meta-analysis.

Clin Oral Investig

January 2025

Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.

Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.

Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.

View Article and Find Full Text PDF

In cardiovascular research, electromagnetic fields generated by Riga plates are utilized to study or manipulate blood flow dynamics, which is particularly crucial in developing treatments for conditions such as arterial plaque deposition and understanding blood behavior under varied flow conditions. This research predicts the flow patterns of blood enhanced with gold and maghemite nanoparticles (gold-maghemite/blood) in an electromagnetic microchannel influenced by Riga plates with a temperature gradient that decays exponentially, under sudden changes in pressure gradient. The flow modeling includes key physical influences like radiation heat emission and Darcy drag forces in porous media, with the flow mathematically represented through unsteady partial differential equations solved using the Laplace transform (LT) method.

View Article and Find Full Text PDF

Cardiac amyloidosis (CA) is an infiltrative disease that results from the deposition of amyloid fibrils in the myocardium, resulting in restrictive cardiomyopathy. The amyloid fibrils are predominantly derived from two parent proteins, immunoglobulin light chain (AL) and transthyretin (ATTR), and ATTR is further classified into hereditary (ATTRv) and wild-type (ATTRwt) based on the presence or absence, respectively, of a mutation in the transthyretin gene. Once thought to be a rare entity, CA is increasingly recognized as a significant cause of heart failure due to improved clinical awareness and better diagnostic imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!