Recently, copper chalcogenide semiconductors have been reported as new near-infrared (NIR) photothermal agents. However, it is difficult to modify them with recognition molecules, and their photothermal conversion efficiencies are relatively low, making it difficult to achieve the targeted photothermal ablation of cancer cells with a high efficiency. In this study, reduced graphene oxide (rGO) was first coated on the surface of CuSe nanoparticles (NPs) to provide abundant functional groups for the next modification and to increase the photothermal conversion efficiency. Then, doxorubicin (DOX) was loaded and folic acid (FA) molecules were covalently linked onto the surface of CuSe/rGO nanocomposites. The formed DOX@CuSe@rGO-FA nanocomposites were successfully used as chemo-photothermal agents for the targeted killing of cancer cells by utilizing the recognition ability of FA, chemotherapy effect of DOX and photothermal effects of rGO and CuSe NPs. Under the 980-nm NIR laser irradiation, the nanocomposites showed significantly enhanced chemo-photothermal therapy effect, which can be potentially applied in the nanomedicine field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2018.01.020 | DOI Listing |
Polymers (Basel)
December 2024
Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan.
The effect of dispersing multiwalled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) in the matrix on the low-velocity impact resistance and post-impact residual tensile strength of the carbon fiber reinforced epoxy composite laminates has been experimentally analyzed in this study. The composite specimens with the matrix reinforced by different nanoparticle types and various nanoparticle concentrations (0.1, 0.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China.
The synergistic effect of CNT and three-dimensional N-doped graphene foam (3DNG) on improving corrosion resistance of zinc-reinforced epoxy (ZRE) composite coatings was studied in this work. Although CNT itself was demonstrated to be effective to promote the anti-corrosion performance of the ZRE coating, the incorporation of additional 3DNG leads to further enhancement of its corrosion resistance under the synergistic effect of the hybrid carbon nanofillers with different dimensions. Both the content of the carbonaceous fillers and the ratio between them affected the performance of the coating.
View Article and Find Full Text PDFMolecules
December 2024
School of Information Technology, Jiangsu Open University, Nanjing 210017, China.
With the rapid growth of the world population and economy, the greenhouse effect caused by CO emissions is becoming more and more serious. To achieve the "two-carbon" goal as soon as possible, the carbon dioxide reduction reaction is one of the most promising strategies due to its economic and environmental friendliness. As an analog of graphene, monolayer h-BN is considered to be a potential catalyst.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain.
Nowadays, there is a growing interest in membrane modification processes to improve their characteristics and the effectiveness of their treatments and reduce the possible fouling. In this sense, in this work, a modification of an ultrafiltration membrane with three different materials has been carried out: reduced graphene oxide (rGO), chitosan and MgCl. For both the native and the modified membranes, a study has been carried out to remove the emerging contaminant sulfamethoxazole (SMX).
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
In this research paper, the factors impacting electrical conductivity of the flexible graphite foils (GFs) produced by different forming processes, namely, either by rolling or pressing, were studied. The relationship between electrical conductivity and texture and structure that formed when producing the material was examined. Correlation was determined between the texture sharpness and anisotropy of electrical conductivity, as well as the extent of impact from the substructural characteristics on the properties' values.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!