A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of light and temperature on the dynamic state of Rhodobacter sphaeroides reaction centers proteins determined from changes in tryptophan fluorescence lifetime and PQ recombination kinetics. | LitMetric

AI Article Synopsis

  • The study explored how temperature impacts the rate of dark recombination between charges in photosynthetic reaction centers of Rhodobacter sphaeroides.
  • Measurements were taken in water-glycerol and trehalose environments at extremely low temperatures, assessing both the recombination rates and fluorescence lifetimes of tryptophan.
  • Findings indicate two main microconformations in the reaction centers, suggesting different electron transfer dynamics based on whether the centers were frozen in the dark or under light.

Article Abstract

The temperature dependencies of the rate of dark recombination of separated charges between the photoactive bacteriochlorophyll and the primary quinone acceptor (Q) in photosynthetic reaction centers (RCs) of the purple bacteria Rhodobacter sphaeroides (Rb. sphaeroides) were investigated. Measurements were performed in water-glycerol and trehalose environments after freezing to -180 °C in the dark and under actinic light with subsequent heating. Simultaneously, the RC tryptophanyl fluorescence lifetime in the spectral range between 323 and 348 nm was measured under these conditions. A correlation was found between the temperature dependencies of the functional and dynamic parameters of RCs in different solvent mixtures. For the first time, differences in the average fluorescence lifetime of tryptophanyl residues were measured between RCs frozen in the dark and in the actinic light. The obtained results can be explained by the RC transitions between different conformational states and the dynamic processes in the structure of the hydrogen bonds of RCs. We assumed that RCs exist in two main microconformations - "fast" and "slow", which are characterized by different rates of P and Q recombination reactions. The "fast" conformation is induced in frozen RCs in the dark, while the "slow" conformation of RC occurs when the RC preparation is frozen under actinic light. An explanation of the temperature dependencies of tryptophan fluorescence lifetimes in RC proteins was made under the assumption that temperature changes affect mainly the electron transfer from the indole ring of the tryptophan molecule to the nearest amide or carboxyl groups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2018.01.027DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetime
12
temperature dependencies
12
actinic light
12
rhodobacter sphaeroides
8
reaction centers
8
tryptophan fluorescence
8
dark actinic
8
rcs
6
light
4
light temperature
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!