Antifungal activity of newly synthesized chemodegradable dicephalic-type cationic surfactants.

Colloids Surf B Biointerfaces

Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.

Published: April 2018

The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants - N,N-bis[3,3'-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-CH, n-CH, n-CH, n-CH), which are of particular interest, as they contain a labile amide group in the molecule and their antifungal activity. Therefore, the minimal inhibitory and fungicidal concentrations (MIC and MFC) of dicephalic surfactants against various fungi were tested using standardized methods. Most of the tested fungi were resistant to the Cn(TAPABr) compounds. The strongest growth inhibition was caused by Cn(DAPACl) series, which MICs ranged from 6.5 to 16 μM. The influence of dicephalic surfactants on Candida albicans biofilm and adhesion to the various surfaces was investigated with crystal violet staining or colony counting. The reduction of fungal adhesion was also observed, especially to the glass surface. One of the compounds (C14(DAPACl)) caused DNA leakage from C. albicans cells. Further studies showed the impact of dicephalic surfactants on ROS production, accumulation of lipid droplets and filament formation. This study points to the possibility of application of dicephalic surfactants as the surface-coating agents to prevent biofilm formation or as disinfectants. The results give an insight into the possible mechanism of action of newly synthesized dicephalic surfactants in yeast cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2018.01.020DOI Listing

Publication Analysis

Top Keywords

dicephalic surfactants
20
n-ch n-ch
12
antifungal activity
8
newly synthesized
8
cationic surfactants
8
surfactants
7
dicephalic
5
activity newly
4
synthesized chemodegradable
4
chemodegradable dicephalic-type
4

Similar Publications

Surfactants are molecules that lower surface or interfacial tension, and thus they are broadly used as detergents, wetting agents, emulsifiers, foaming agents, or dispersants. However, for modern applications, substances that can perform more than one function are desired. In this study we evaluated antioxidant properties of two homological series of N-oxide surfactants: monocephalic 3-(alkanoylamino)propyldimethylamine-N-oxides and dicephalic N,N-bis[3,3'-(dimethylamino)propyl]alkylamide di-N-oxides.

View Article and Find Full Text PDF

Biofilm eradication and antifungal mechanism of action against Candida albicans of cationic dicephalic surfactants with a labile linker.

Sci Rep

April 2021

Department Physicochemistry of Microorganisms, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.

Our research aims to expand the knowledge on relationships between the structure of cationic dicephalic surfactants-N,N-bis[3,3_-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3_-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-C9H19, n-C11H23, n-C13H27, n-C15H31)-and their antifungal mechanism of action on Candida albicans. The mentioned groups of amphiphilic substances are characterized by the presence of a weak, hydrochloride cationic center readily undergoing deprotonation, as well as a stable, strong quaternary ammonium group and alkyl chains capable of strong interactions with fungal cells. Strong fungicidal properties and the role in creation and eradication of biofilm of those compounds were discussed in our earlier works, yet their mechanism of action remained unclear.

View Article and Find Full Text PDF

Multifunctional cationic surfactants with a labile amide linker as efficient antifungal agents-mechanisms of action.

Appl Microbiol Biotechnol

February 2021

Department Physicochemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.

Our research aimed to expand the knowledge of relationships between the structure of multifunctional cationic dicephalic surfactants with a labile linker-N,N-bis[3,3-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-CH, n-CH, n-CH, n-CH)-and their possible mechanism of action on fungal cells using the model organism Saccharomyces cerevisiae. General studies performed on surfactants suggest that in most cases, their main mechanism of action is based on perforation of the cell membranes and cell disruption. Experiments carried out in this work with cationic dicephalic surfactants seem to modify our understanding of this issue.

View Article and Find Full Text PDF

Antifungal activity of newly synthesized chemodegradable dicephalic-type cationic surfactants.

Colloids Surf B Biointerfaces

April 2018

Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.

The studies were aimed to contribute to the elucidation of the relationships between structure of the double-headed cationic surfactants - N,N-bis[3,3'-(dimethylamine)propyl]alkylamide dihydrochlorides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides (alkyl: n-CH, n-CH, n-CH, n-CH), which are of particular interest, as they contain a labile amide group in the molecule and their antifungal activity. Therefore, the minimal inhibitory and fungicidal concentrations (MIC and MFC) of dicephalic surfactants against various fungi were tested using standardized methods. Most of the tested fungi were resistant to the Cn(TAPABr) compounds.

View Article and Find Full Text PDF

The authors examine properties of daunorubicin (DNR)-loaded oil-core multilayer nanocapsules prepared via layer-by-layer approach with different polyelectrolyte (PE) coatings such as a standard one (containing polysodium 4-styrenesulphonate/poly(diallyldimethyl-ammonium) chloride) and a polysaccharide-based shell (dextran/chitosan), in regard to the outer layer of poly-l-glutamic acid (PGA) grafted with polyethylene glycol (PGA-g-PEG). The nanocarriers are obtained on a cationic nanoemulsion template (stabilized by dicephalic-type surfactant, N,N-bis[3,30-(trimethylammonio)propyl]-dodecanamide dimethylsulfate) and layered with the PE shell of different thicknesses resulting in average size of 150 nm in diameter (as shown by dynamic light scattering, scanning electron microscopy and cryogenic-transmission electron microscopy, and atomic force microscopy). The nanocapsules demonstrate efficient DNR encapsulation and its sustained release under physiological conditions or in the attendance of human serum albumin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!