Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wound healing involves the integration of biological and molecular events and, in case of chronic wounds, the use of drugs can be associated to side effects. Therefore, there is a search for alternatives therapeutics that encompass minimal toxicity. The use of natural compounds is an attractive approach for treating inflammatory disorders, wounds and burns. In this context, thymol has antimicrobial, antioxidant and antiseptic properties and is a promising compound in wound healing and inflammation management. However, essential oils and their constituents such as thymol present high volatility and can also easily decompose, thereby the encapsulation of these compounds into nanoparticles may be an efficient approach to modulate the release of the active ingredient, to increase the physical stability and to eventually reduce the toxicity. The aims of this work were to encapsulate thymol in nanostructured lipid carriers (NLCs) composed of natural lipids and assess its in vivo anti-inflammatory and antipsoriatic activity. The carrier containing thymol was produced by sonication method and showed 107.7 (±3.8) nm of size, zeta potential of -11.6 (±2.9) mV and entrapment efficiency of 89.1 (±4.2)%. Thymol-NLCs were incorporated into a gel and the final formulation presented rheological characteristics and pH suitable for topic application. In addition, the gel containing thymol-NLCs was tested in vivo on two different mouse models of skin inflammation, showing anti-inflammatory activity. Finally, this formulation was tested in an imiquimod-induced psoriasis mouse model and showed improved healing, compared to negative control. Therefore, thymol-NLCs is an interesting formulation for future treatment of inflammatory skin diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.01.053 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!