Self-sterilizing ormosils surfaces based on photo-synzthesized silver nanoparticles.

Colloids Surf B Biointerfaces

Grupo de Química de Materiais Híbridos e Inorgânicos, Prédio de Química Ambiental, Instituto de Química de São Carlos, Universidade de São Paulo, 13563-120, São Carlos, SP, Brazil. Electronic address:

Published: April 2018

Medical device-related infections represent a major healthcare complication, resulting in potential risks for the patient. Antimicrobial materials comprise an attractive strategy against bacterial colonization and biofilm proliferation. However, in most cases these materials are only bacteriostatic or bactericidal, and consequently they must be used in combination with other antimicrobials in order to reach the eradication condition (no viable microorganisms). In this study, a straightforward and robust antibacterial coating based on Phosphotungstate Ormosil doped with core-shell (SiO@TiO) was developed using sol-gel process, chemical tempering, and Ag nanoparticle photoassisted synthesis (POrs-CS-Ag). The coating was characterized by X-ray Fluorescence Spectroscopy (XRF), Field Emission Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Microscopy (XPS). The silver free coating displays low antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, in opposition to the silver loaded ones, which are able to completely eradicate these strains. Moreover, the antimicrobial activity of these substrates remains high until three reutilization cycles, which make them a promising strategy to develop self-sterilizing materials, such as POrs-CS-Ag-impregnated fabric, POrs-CS-Ag coated indwelling metals and polymers, among other materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.12.016DOI Listing

Publication Analysis

Top Keywords

self-sterilizing ormosils
4
ormosils surfaces
4
surfaces based
4
based photo-synzthesized
4
photo-synzthesized silver
4
silver nanoparticles
4
nanoparticles medical
4
medical device-related
4
device-related infections
4
infections represent
4

Similar Publications

Self-sterilizing ormosils surfaces based on photo-synzthesized silver nanoparticles.

Colloids Surf B Biointerfaces

April 2018

Grupo de Química de Materiais Híbridos e Inorgânicos, Prédio de Química Ambiental, Instituto de Química de São Carlos, Universidade de São Paulo, 13563-120, São Carlos, SP, Brazil. Electronic address:

Medical device-related infections represent a major healthcare complication, resulting in potential risks for the patient. Antimicrobial materials comprise an attractive strategy against bacterial colonization and biofilm proliferation. However, in most cases these materials are only bacteriostatic or bactericidal, and consequently they must be used in combination with other antimicrobials in order to reach the eradication condition (no viable microorganisms).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!