Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Insulin resistance is an important pathological hallmark of type 2 diabetes mellitus. Glucose-stimulated insulin secretion (GSIS) plays a key role in maintaining blood glucose levels within normal range. Impaired GSIS has been associated with type 2 diabetes, however, the underlying molecular mechanisms remain largely unknown. Cysteinyl leukotriene receptor 1 (cysLT1R) is an important G protein-coupled receptor mediating the biological functions of cysteinyl leukotrienes (cys-LTs). Little is known about the effects of cysLT1R in insulin secretion and pathogenesis of T2DM. In the present study, we aimed to define the physiological functions of cysLT1R in GSIS in MIN6 β-cells. Using reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis, we found that cysLT1R was expressed in pancreatic MIN6 β-cells. We also reported that glucose increased the expression of cysLT1R in MIN6 cells. Additionally, the cysLT1R antagonist montelukast promoted GSIS in a dose dependent manner, however, the cysLT1R agonist LD4 inhibited GSIS, suggesting an antagonistic effect of cysLT1R on GSIS. Silencing of cysLT1R by transfection with cysLT1R siRNA enhanced GSIS while overexpression of cysLT1R reduced GSIS in pancreatic MIN6 β-cells. Mechanistically, we found that the Arf6/Cdc42/Rac1 pathway was involved in this process. Collectively, our findings highlight the essential role of cysLT1R in suppressing pancreatic insulin secretion, and potentially provided a new insight into understanding the mechanical regulation of glucose homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2018.02.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!