The Industrial Emissions Directive requires that coke wastewater is treated to reach an effluent with < 50 mg/L total nitrogen (TN). A shortage of alkalinity (3.6 mg as CaCO/mg [Formula: see text]) in the wastewater limited nitrification to 45%. Various compounds were tested as a source of additional alkalinity, with optimal results being found for sodium carbonate, which enabled 95% nitrification at 300 mg/L (as CaCO). Sodium bicarbonate led to incomplete ammonia oxidation (76%) whilst soda ash prevented nitrite oxidation. Addition of sodium hydroxide enabled 98% nitrification but was associated with [Formula: see text] accumulation. Ammonia and nitrite oxidation had optimal pH ranges of 7.0-8.3 and 5.5-6.8, respectively. As organic carbon concentrations in coke wastewater are at times insufficient for effective denitrification external organic carbon was also considered to enhance denitrification. A laboratory-scale anoxic-aerobic activated sludge process was used to investigate glycerol and acetic acid as carbon sources. Glycerol was associated with a low biomass production (0.18 mg of biomass produced per 1 mg of glycerol) and mixed liquor suspended solids (MLSS) declined from 2235 to 750 mg/L leading to incomplete nitrification (< 30%) and an effluent TN of 59 mg/L. Acetic acid had a higher biomass production (0.31 mg of biomass produced per 1 mg of acetic acid) maintaining stable MLSS concentrations (3137 mg/L). Overall, a denitrification-nitrification process with alkalinity (NaCO at 300 mg/L) and acetic acid dosing enabled an effluent TN of 24 mg/L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2018.1437779 | DOI Listing |
Microorganisms
January 2025
Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.
Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China. Electronic address:
The effects of coconut shell biochar and coke on anaerobic digestion of river snail rice noodle wastewater treatment were assessed, and the microbial community, and methane metabolic pathways were investigated. When the hydraulic retention time was 24 h, the average chemical oxygen demand (COD) removal rates in the reactors with coconut shell biochar and coke were 94.02% and 88.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, PR China. Electronic address:
Although prokaryotic microbes in coking wastewater (CWW) treatment have been comprehensively studied, the ecological functions of viruses remain unclear. A full-scale CWW biological treatment AOHO combination was studied for the virus-bacterium interactions involved in element cycles by metaviromics, metagenomics and physicochemical characteristics. Results showed the unique viromic profile with Cirlivirales and Petitvirales as the dominant viruses infecting functional bacteria hosts.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Civil and Environmental Engineering, University of Alberta, 9211-116 St. NW, Edmonton, Alberta T6G 1H9, Canada.
Int J Mol Sci
November 2024
School of Chemical Sciences & Technology, School of Materials and Energy, Institute of Frontier Technologies in Water Treatment, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming 650091, China.
Chloride ions readily react with organic matter and other ions, resulting in the formation of disinfection by-products (DBPs) that exhibit heightened levels of toxicity, carcinogenicity, and mutagenicity. This study creatively employed waste walnut shells as self-templates and low-cost magnesium bicarbonate as a rigid template to successfully synthesize multifunctional porous carbon derived from walnut shells. Employing a series of characterization techniques, it was ascertained that the porous carbon material (WSC/Mg) synthesized via the dual-template method exhibited a distinct layered microscopic surface structure, with a predominance of C and O elements on the surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!