Recently, printable nanomaterials have drawn tremendous attention for low-cost, large-area electronics applications. In particular, metallic nanoparticles that can facilitate the formation of highly functioning electrodes are indispensable constituent nanomaterials. In this paper, we propose printable mixed inks comprising multicomponent ingredients of Cu, Ni and Cu/CuSn core/shell nanoparticles. It is clearly revealed that a characteristic morphology appropriate to highly conductive and durable Cu-based electrodes can be derived easily in a timescale of about 1 ms through an instantaneous flash-light-sintering process, resulting in a resistivity of 49 μΩ cm and normalized resistance variation of around 1 (after 28 days under a harsh environment of 85 °C temperature and 85% humidity). In addition, it is demonstrated that highly functioning electrodes can be formed on thermally vulnerable polyethylene terephthalate (PET) substrates by incorporating an ultrathin optical/thermal plasmonic barrier layer.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr00200bDOI Listing

Publication Analysis

Top Keywords

durable cu-based
8
cu-based electrodes
8
highly functioning
8
functioning electrodes
8
highly
4
highly durable
4
electrodes
4
electrodes printable
4
printable nanoparticle
4
nanoparticle mixture
4

Similar Publications

Syngas Production Improvement from CO2RR Using Cu-Sn Electrodeposited Catalysts.

Materials (Basel)

December 2024

Departamento de Química Física Aplicada, Universidad Autónoma de Madrid (UAM), C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain.

Article Synopsis
  • The study explores using electrodeposited copper (Cu) and tin (Sn) in electrocatalysts to efficiently reduce atmospheric CO and produce valuable products while integrating with renewable energy.
  • The research focuses on different configurations of Cu and Sn, finding that a catalyst with Sn over a thin layer of Cu performs best, demonstrating promising durability in initial tests.
  • Optimized Sn and Cu-based catalysts yield over 60% organic products, mainly CO, at low energy costs (under 3 V), highlighting the process's economic viability.
View Article and Find Full Text PDF

Self-Recycled electron donor resists disfavored oxidation reconstruction of Cu-based electrocatalyst for nitrate removal by charge compensation.

Water Res

December 2024

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China. Electronic address:

Article Synopsis
  • The excessive use of nitrate has caused environmental issues by accumulating in natural water, posing risks to human health.
  • Electrochemical NO reduction (eNORR) to ammonia offers a low-energy method for removing nitric oxide (NO), but traditional Cu-based catalysts experience performance degradation due to oxidation.
  • This study introduces a charge compensation strategy using Ti as a self-recycling electron donor to enhance the stability and efficiency of Cu-based eNORR catalysts, achieving a remarkable 95% NO removal rate during 30 hours of testing.
View Article and Find Full Text PDF

Electrochemical methods for treating phenolic wastewater have been widely studied, with most research focusing primarily on the anode, while the cathode has generally served as a counter electrode. This study aims to enhance the electrocatalytic process by developing a new Fe/Cu-based cathode using a simple redox method. We created a CuOCu@Fe-FeO (0 < x < 1, combining FeO and FeO) electrode, referred to as CCFFO, to facilitate the electro-Fenton process without requiring additional HO or Fe.

View Article and Find Full Text PDF

Self-Reconstruction Induced Electronic Metal-Support Interaction for Modulated Cu Sites on TiO Nanofibers in Electrocatalytic Nitrate Conversion.

Small

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

The Cu active sites have gained great attention in electrochemical nitrate reduction, offering a highly promising method for nitrate removal from water bodies. However, challenges arise from the instability of the Cu state and microscopic structure over prolonged operation, limiting the selectivity and durability of Cu-based electrodes. Herein, a self-reconstructed CuO/TiO nanofibers (CuO/TiO NFs) catalyst, demonstrating exceptional stability over 50 cycles (12 h per cycle), a high NO -N removal rate of 90.

View Article and Find Full Text PDF

The development of highly active, low-cost, and robust electrocatalysts for the oxygen evolution reaction (OER) is a crucial endeavor for the clean and economically viable production of hydrogen electrochemical water splitting. Herein, cuprous oxide (CuO) thin films are deposited on silver nanowire (AgNW) networks by atmospheric-pressure spatial atomic layer deposition (AP-SALD). AgNW@CuO nanocomposites supported on conductive copper electrodes exhibited superior OER activity as compared to bare copper substrate and bare AgNWs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!