Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Accurate control of the shape transformation of polymersome is an important and interesting challenge that spans across disciplines such as nanomedicine and nanomachine. Here, we report a fast and facile methodology of shape manipulation of polymersome via out-of-equilibrium polymer self-assembly and shape change by chemical addition of additives. Due to its increased permeability, hydrophilicity, and fusogenic properties, poly(ethylene oxide) was selected as the additive for bringing the system out of equilibrium via fast addition into the polymersome organic solution. A new shape, stomatocyte-in-stomatocyte (sto-in-sto), is obtained for the first time. Moreover, fast shape transformation within less than 1 min to other relevant shapes such as stomatocyte and large compound vesicles was also obtained and accurately controlled in a uniform dispersion. This methodology is demonstrated as a general strategy with which to push the assembly further out of equilibrium to generate unusual nanostructures in a controllable and fast manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997403 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.8b00187 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!