Nitrous oxide (N O) is emitted during microbiological nitrogen (N) conversion processes, when N O production exceeds N O consumption. The magnitude of N O production vs. consumption varies with pH and controlling net N O production might be feasible by choice of system pH. This article reviews how pH affects enzymes, pathways and microorganisms that are involved in N-conversions in water engineering applications. At a molecular level, pH affects activity of cofactors and structural elements of relevant enzymes by protonation or deprotonation of amino acid residues or solvent ligands, thus causing steric changes in catalytic sites or proton/electron transfer routes that alter the enzymes' overall activity. Augmenting molecular information with, e.g., nitritation or denitrification rates yields explanations of changes in net N O production with pH. Ammonia oxidizing bacteria are of highest relevance for N O production, while heterotrophic denitrifiers are relevant for N O consumption at pH > 7.5. Net N O production in N-cycling water engineering systems is predicted to display a 'bell-shaped' curve in the range of pH 6.0-9.0 with a maximum at pH 7.0-7.5. Net N O production at acidic pH is dominated by N O production, whereas N O consumption can outweigh production at alkaline pH. Thus, pH 8.0 may be a favourable pH set-point for water treatment applications regarding net N O production.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.14063DOI Listing

Publication Analysis

Top Keywords

net production
24
production
11
production consumption
8
water engineering
8
net
6
dependency n-converting
4
n-converting enzymatic
4
enzymatic processes
4
processes pathways
4
pathways microbes
4

Similar Publications

Previous health impact assessments of temperature-related mortality in Europe indicated that the mortality burden attributable to cold is much larger than for heat. Questions remain as to whether climate change can result in a net decrease in temperature-related mortality. In this study, we estimated how climate change could affect future heat-related and cold-related mortality in 854 European urban areas, under several climate, demographic and adaptation scenarios.

View Article and Find Full Text PDF

Bioenergetic trade-offs can reveal the path to superior microbial CO fixation pathways.

mSystems

January 2025

Department of Chemical and P. Engineering, Research and Innovation Centre on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates.

A comprehensive optimization of known prokaryotic autotrophic carbon dioxide (CO) fixation pathways is presented that evaluates all their possible variants under different environmental conditions. This was achieved through a computational methodology recently developed that considers the trade-offs between energy efficiency (yield) and growth rate, allowing us to evaluate candidate metabolic modifications for microbial conversions. The results revealed the superior configurations in terms of both yield (efficiency) and rate (driving force).

View Article and Find Full Text PDF

Background: Sudden sensorineural hearing loss (SSNHL) is associated with abnormal changes in the brain's central nervous system. Previous studies on the brain networks of SSNHL have primarily focused on functional connectivity within the brain. However, in addition to functional connectivity, structural connectivity also plays a crucial role in brain networks.

View Article and Find Full Text PDF

Phosphorus (P) deficiency is a critical factor limiting crop productivity, primarily due to its detrimental effects on photosynthesis and dry matter accumulation. In this study, we investigate the role of the rice gene OsPHT2;1 in mediating chloroplast P homeostasis and its subsequent impact on photosynthetic function under low P conditions. Stomatal conductance is typically positively correlated with net photosynthetic rates; however, P deficiency disrupts this relationship, leading to reduced stomatal opening and diminished photosynthetic efficiency.

View Article and Find Full Text PDF

Electro-oxidative Deoxyfluorination of Arenes with NEt·3HF.

J Org Chem

January 2025

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States.

This report describes the design, development, and optimization of an electrochemical deoxyfluorination of arenes using a tetrafluoropyridine-derived leaving group. NEt·3HF serves as the fluoride source, and the reactions are conducted using either constant potential or constant current electrolysis in an undivided electrochemical cell. Mechanistic studies support a net oxidative pathway, in which initial single-electron oxidation generates a radical cation intermediate that is trapped by fluoride.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!