In temperate latitudes, many insects enter diapause (dormancy) during the cold season, a period during which developmental processes come to a standstill. The wood white (Leptidea sinapis) is a butterfly species distributed across western Eurasia that shows photoperiod-induced diapause with variation in critical day-length across populations at different latitudes. We assembled transcriptomes and estimated gene expression levels at different developmental stages in experimentally induced directly developing and diapausing cohorts of a single Swedish population of L. sinapis to investigate the regulatory mechanisms underpinning diapause initiation. Different day lengths resulted in expression changes of developmental genes and affected the rate of accumulation of signal molecules, suggesting that diapause induction might be controlled by increased activity of monoamine neurotransmitters in larvae reared under short-day light conditions. Expression differences between light treatment groups of two monoamine regulator genes (DDC and ST) were observed already in instar III larvae. Once developmental pathways were irreversibly set at instar V, a handful of genes related to dopamine production were differentially expressed leading to a significant decrease in expression of global metabolic genes and increase in expression of genes related to fatty acid synthesis and sequestration. This is in line with a time-dependent (hour-glass) model of diapause regulation where a gradual shift in the concentration of monoamine neurotransmitters and their metabolites during development of larvae under short-day conditions leads to increased storage of fat, decreased energy expenditures, and ultimately developmental stasis at the pupal stage.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.14501DOI Listing

Publication Analysis

Top Keywords

gene expression
8
wood white
8
white leptidea
8
leptidea sinapis
8
diapause regulation
8
monoamine neurotransmitters
8
diapause
6
developmental
5
expression
5
genes
5

Similar Publications

TRPV4 as a Novel Regulator of Ferroptosis in Colon Adenocarcinoma: Implications for Prognosis and Therapeutic Targeting.

Dig Dis Sci

January 2025

Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.

Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Role of immune cell homeostasis in research and treatment response in hepatocellular carcinoma.

Clin Exp Med

January 2025

Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.

Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.

View Article and Find Full Text PDF

We have recently shown that fluoxetine (FX) suppressed polyinosinic-polycytidylic acid-induced inflammatory response and endothelin release in human epidermal keratinocytes, via the indirect inhibition of the phosphoinositide 3-kinase (PI3K)-pathway. Because PI3K-signaling is a positive regulator of the proliferation, in the current, highly focused follow-up study, we assessed the effects of FX (14 µM) on the proliferation and differentiation of human epidermal keratinocytes. We found that FX exerted anti-proliferative actions in 2D cultures (HaCaT and primary human epidermal keratinocytes [NHEKs]; 48- and 72-h; CyQUANT-assay) as well as in 3D reconstructed epidermal equivalents (48-h; Ki-67 immunohistochemistry).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!