PET images deliver functional data, whereas MRI images provide anatomical information. Merging the complementary information from these two modalities is helpful in oncology. Alignment of PET/MRI images requires the use of multi-modal registration methods. Most of existing PET/MRI registration methods have been developed for humans and few works have been performed for small animal images. We proposed an automatic tool allowing PET/MRI registration for pre-clinical study based on a two-level hierarchical approach. First, we applied a non-linear intensity transformation to the PET volume to enhance. The global deformation is modeled by an affine transformation initialized by a principal component analysis. A free-form deformation based on B-splines is then used to describe local deformations. Normalized mutual information is used as voxel-based similarity measure. To validate our method, CT images acquired simultaneously with the PET on tumor-bearing mice were used. Results showed that the proposed algorithm outperformed affine and deformable registration techniques without PET intensity transformation with an average error of 0.72 ± 0.44 mm. The optimization time was reduced by 23% due to the introduction of robust initialization. In this paper, an automatic deformable PET-MRI registration algorithm for small animals is detailed and validated. Graphical abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-018-1797-0 | DOI Listing |
EJNMMI Rep
January 2025
Department of Diagnostics and Intervention, Diagnostic Radiology, Umeå University, Umeå, Sweden.
Background: In uterine cervical cancer (UCC), tumour staging is performed according to the 2018 International Federation of Gynecology and Obstetrics (FIGO) system, where imaging is incorporated, or the more generic Tumour Node Metastasis (TNM) classification. With the technical development in diagnostic imaging, continuous prospective evaluation of the different imaging methods contributing to stage determination is warranted. The aims of this interim study were to (1) evaluate the performance of radiological FIGO (rFIGO) and T staging (rT) with 2-fluorine-18-fluoro-deoxy-glucose (2[18F]-FDG)-positron emission tomography with computed tomography (PET/CT) and with magnetic resonance imaging (PET/MRI), compared to clinical FIGO (cFIGO) and T (cT) staging based on clinical examination and conventional imaging, in treatment-naïve UCC, and to (2) identify possible MRI biomarkers for early treatment response after radiotherapy.
View Article and Find Full Text PDFBMJ Open
December 2024
Unité de recherche Clinique, Hôpital Bichat-Claude-Bernard, Paris, Île-de-France, France.
Introduction: Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. A growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post-traumatic disorders.
View Article and Find Full Text PDFJ Clin Med
December 2024
Herston Biofabrication Institute, Metro North Health, Herston, QLD 4029, Australia.
: Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT), in combination with magnetic resonance imaging (MRI), may enhance the diagnosis and staging of prostate cancer. Image fusion of separately acquired PET/CT and MRI images serve to facilitate clinical integration and treatment planning. This study aimed to investigate different PSMA PET/CT and MRI image fusion workflows for prostate cancer visualisation.
View Article and Find Full Text PDFQ J Nucl Med Mol Imaging
December 2024
Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA -
Positron-emission tomography magnetic resonance imaging (PET/MRI) has emerged as a powerful hybrid molecular imaging technique in clinical practice, overcoming initial technical challenges to provide comprehensive anatomic and metabolic information. This advanced modality combines the superior soft tissue contrast of MRI with the metabolic insights of PET, offering advantages in hepatobiliary imaging, including improved detection of small liver metastases and reduced radiation exposure. The evolution of PET/MRI technology has been marked by significant advancements, such as the development of MRI-compatible PET detectors and sophisticated motion compensation techniques.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
November 2024
Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei Province, China.
Purpose: Radiolabeled probes targeting prostate-specific membrane antigen (PSMA) have been used in prostate cancer. Moreover, PSMA is also overexpressed on neovessels in hepatocellular carcinoma (HCC). This study aimed to preliminarily evaluate the diagnostic effectiveness of [Ga]Ga-PSMA-617 PET/MRI for HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!