AI Article Synopsis

  • * The developed device shows a low turn-on voltage of 2.6 V, roughly 40% transparency in visible light, and effective electrical conductivity using a special TiN/Ti interlayer.
  • * The nanowire LED emits a broad spectrum of light, centered around a yellow hue (~590 nm), and successfully demonstrated tunable white light, which could enhance solid-state lighting applications.

Article Abstract

Consumer electronics have increasingly relied on ultra-thin glass screen due to its transparency, scalability, and cost. In particular, display technology relies on integrating light-emitting diodes with display panel as a source for backlighting. In this study, we undertook the challenge of integrating light emitters onto amorphous quartz by demonstrating the direct growth and fabrication of a III-nitride nanowire-based light-emitting diode. The proof-of-concept device exhibits a low turn-on voltage of 2.6 V, on an amorphous quartz substrate. We achieved ~ 40% transparency across the visible wavelength while maintaining electrical conductivity by employing a TiN/Ti interlayer on quartz as a translucent conducting layer. The nanowire-on-quartz LED emits a broad linewidth spectrum of light centered at true yellow color (~ 590 nm), an important wavelength bridging the green-gap in solid-state lighting technology, with significantly less strain and dislocations compared to conventional planar quantum well nitride structures. Our endeavor highlighted the feasibility of fabricating III-nitride optoelectronic device on a scalable amorphous substrate through facile growth and fabrication steps. For practical demonstration, we demonstrated tunable correlated color temperature white light, leveraging on the broadly tunable nanowire spectral characteristics across red-amber-yellow color regime.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801136PMC
http://dx.doi.org/10.1186/s11671-018-2453-1DOI Listing

Publication Analysis

Top Keywords

amorphous quartz
12
direct growth
8
iii-nitride nanowire-based
8
light-emitting diode
8
growth fabrication
8
growth iii-nitride
4
nanowire-based yellow
4
yellow light-emitting
4
amorphous
4
diode amorphous
4

Similar Publications

Ceramic detachments in cladding systems are indicative of adhesion loss between the ceramic tiles and the substrate or its adhesive mortar due to inadequate quality workmanship, the quality of the adhesive mortar or that of the ceramic material, whether acting simultaneously or not. The shear stresses resulting from the ceramic tiles' expansion due to humidity accelerate this process. There is a shortage of studies on the quality of ceramic tiles and adhesive mortars.

View Article and Find Full Text PDF

Defect-Mediated Crystallization of the Particulate TiO Photocatalyst Grown by Atomic Layer Deposition.

J Phys Chem C Nanomater Interfaces

January 2025

Surface Science Laboratory, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland.

Nanopowders or films of pure and mixed oxides in nanoparticulate form have gained specific interest due to their applicability in functionalizing high-surface-area substrates. Among various other applications, our presented work primarily focuses on the behavior of TiO as a photocatalyst deposited by atomic layer deposition (ALD) on a quartz particle. The photocatalytic activity of TiO on quartz particles grown by ALD was studied in terms of ALD growth temperature and post-treatment heating rate.

View Article and Find Full Text PDF

This study aimed to test the use of Rietveld refinement on respirable aerosol samples to determine the phase of respirable crystalline silica (RCS) and other minerals. The results from the Rietveld refinement were compared to an external standard method and gravimetrical measurements. Laboratory samples consisting of α-quartz, feldspar, and calcite with variable proportions and total mass loadings were made and analyzed using the NIOSH 7500 , followed by Rietveld refinement.

View Article and Find Full Text PDF

Short- and long-term pathologic responses to quartz are induced by nearly free silanols formed during crystal fracturing.

Part Fibre Toxicol

December 2024

Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institute of Experimental and Clinical Research (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.

Article Synopsis
  • - The inhalation of respirable crystalline silica, particularly quartz, is linked to serious health issues like lung inflammation, fibrosis, cancer, and autoimmune diseases, with nearly free silanols (NFS) from fractured quartz being key players in this toxicity.
  • - Experiments on mice showed that exposure to NFS-rich quartz caused significant acute and long-term inflammatory responses, fibrosis, cancer, and autoimmune signs, while NFS-poor quartz showed no such effects.
  • - The study highlights that NFS-rich quartz specifically triggers harmful biological responses, including increased pro-inflammatory cytokines, lung fibrosis markers, tumors, and autoantibodies, underscoring its health risks compared to less reactive quartz forms.
View Article and Find Full Text PDF

The "stickiness" of extracellular vesicles (EVs) can pose challenges for EV processing and storage, but adhesive properties may also be exploited to immobilize EVs directly on surfaces for various measurement techniques, including super-resolution microscopy. Direct adhesion to surfaces may allow examination of broader populations of EVs than molecular affinity approaches, which can also involve specialized, expensive affinity reagents. Here, we report on the interaction of EVs with borosilicate glass and quartz coverslips and on the effects of pre-coating coverslips with poly-L-lysine (PLL), a reagent commonly used to facilitate interactions between negatively charged surfaces of cells and amorphous surfaces.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!