Based on the engineering background of water dissolving mining for hydrocarbon storage in multi-laminated salt stratum, the mixed mode fracture toughness and fracture trajectory of gypsum interlayers soaked in half-saturated brine at various temperatures (20°C, 50°C and 80°C) were studied by using CSNBD (centrally straight-notched Brazilian disc) specimens with required inclination angles (0°, 7°, 15°, 22°, 30°, 45°, 60°, 75°, 90°) and SEM (scanning electron microscopy). The results showed: (i) The fracture load of gypsum specimens first decreased then increased with increasing inclination angle, due to the effect of friction coefficient. When soaked in brine, the fracture toughness of gypsum specimens gradually decreased with increasing brine temperature. (ii) When soaked in brine, the crystal boundaries of gypsum separated and became clearer, and the boundaries became more open between the crystals with increasing brine temperature. Besides, tensile micro-cracks appeared on the gypsum crystals when soaked in 50°C brine, and the intensity of tensile cracks became more severe when soaking in 80°C brine. (iii) The experimental fracture envelopes derived from the conventional fracture criteria and lay outside these conventional criteria. The experimental fracture envelopes were dependent on the brine temperature and gradually expanded outward as brine temperature increases. (iv) The size of FPZ (fracture process zone) was greatly dependent on the damage degree of materials and gradually increased with increase of brine temperature. The study has important implication for the control of shape and size of salt cavern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792918 | PMC |
http://dx.doi.org/10.1098/rsos.171374 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!