Influence of chromium hyperdoping on the electronic structure of CHNHPbI perovskite: a first-principles insight.

Sci Rep

Instituto de Energía Solar, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria, s/n, 28040, Madrid, Spain.

Published: February 2018

Organic-inorganic hybrid halide perovskites compounds are emerging as new materials with great potential for efficient solar cells. This paper explores the possibility of increasing their photovoltaic efficiency through sub-bandgap absorption by way of the in gap band (IGB) concept. Thus, we assess the formation of an in gap band as well as its effect on the absorption features of Organic-inorganic hybrid halide perovskites CHNHPbI (MAPI). For this task, we use density functional theory (DFT) as well as many-body perturbation methods along to spin-orbit coupling (SOC) to study structural, energetic and electronic properties of partially Cr-substituted MAPI perovskites (CHNHPbCrI). Our results reveal that Cr replacement does not lead to an important cell distortion, while the energetic of the substitution process evidences the possibility of obtaining Cr-substituted perovskite. The analysis of the electronic structure shows that Cr 3d-orbitals induce new electronic states in the host semiconductor bandgap, which fulfill the requirements to be considered as an IGB. Precise many-body perturbation methods in GW approach provided an accurate description on the electronic structures as well as the position of the IGB. In short, Pb replacement by Cr could be useful for improved absorption features through new sub-bandgap transitions across the in gap band.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802816PMC
http://dx.doi.org/10.1038/s41598-018-20851-xDOI Listing

Publication Analysis

Top Keywords

gap band
12
electronic structure
8
organic-inorganic hybrid
8
hybrid halide
8
halide perovskites
8
absorption features
8
many-body perturbation
8
perturbation methods
8
electronic
5
influence chromium
4

Similar Publications

This study presents an eco-friendly, cost-effective approach for synthesizing highly efficient nanocatalysts with the help of organic waste. Iron nanoparticles (INPs) were synthesized from aqueous extracts of potato, potato peel, and potato leaf and were evaluated for their photocatalytic efficiency for the degradation of methylene blue dye. X-ray Diffraction (XRD) confirmed FeO nanoparticles cubic crystal structure with the smallest crystallite size (9.

View Article and Find Full Text PDF

We have conducted a systematic study employing density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) to explore the gas sensing capabilities of nitrogen-doped single vacancy graphene quantum dots (SV/3N) decorated with transition metals (TM = Mn, Co, Cu). We have studied the interactions between TM@SV/3N and four different target gases (AsH, NH, PH, and HS) through the computation of adsorption energies, charge transfer, noncovalent interaction, density of states, band gap, and work function for 12 distinct adsorption systems. Our comprehensive analysis included an in-depth assessment of sensors' stability, sensitivity, selectivity, and reusability for practical applications.

View Article and Find Full Text PDF

The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.

View Article and Find Full Text PDF

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Photocatalytic technology holds significant promise for sustainable development and environmental protection due to its ability to utilize renewable energy sources and degrade pollutants efficiently. In this study, BiOI nanosheets (NSs) were synthesized using a simple water bath method with varying amounts of mannitol and reaction temperatures to investigate their structural, morphological, photoelectronic, and photocatalytic properties. Notably, the introduction of mannitol played a critical role in inducing a transition in BiOI from an n-type to a p-type semiconductor, as evidenced by Mott-Schottky (M-S) and band structure analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!