The magnetic and electrical properties of complex oxide thin films are closely related to the phase stability and cation ordering, which demands that we understand the process-structure-property relationships microscopically in functional materials research. Here we study multiferroic thin films of double-perovskite LaNiMnO epitaxially grown on SrTiO, KTaO, LaAlO and DyScO substrates by pulsed laser deposition. The effect of epitaxial strains imposed by the substrate on the microstructural properties of LaNiMnO has been systematically investigated by means of advanced electron microscopy. It is found that LaNiMnO films under tensile strain exhibit a monoclinic structure, while under compressive strain the crystal structure of LaNiMnO films is rhombohedral. In addition, by optimizing the film deposition conditions a long-range ordering of B-site cations in LaNiMnO films has been obtained in both monoclinic and rhombohedral phases. Our results not only provide a strategy for tailoring phase stability by strain engineering, but also shed light on tuning B-site ordering by controlling film growth temperature in double-perovskite LaNiMnO films.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802844 | PMC |
http://dx.doi.org/10.1038/s41598-018-20812-4 | DOI Listing |
Sci Rep
January 2025
Cellulose and Paper Department, National Research Centre, Cairo, 12622, Egypt.
Compounds containing the piperidine group are highly attractive as building blocks for designing new drugs. Functionalized piperidines are of significant interest due to their prevalence in the pharmaceutical field. Herein, 3-oxo-3-(piperidin-1-yl) propanenitrile has been synthesized, and piperidine-based sodium alginate/poly(vinyl alcohol) films have been prepared.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
From Rehabilitation Research and Development, Palo Alto Veterans Administration Medical Center and the Schools of Medicine and Engineering, Stanford University, Stanford, Calif.
A biologically safe, noninvasive method for visualizing bone and soft tissue relationships has been developed recently. Termed the ultrasonic transmission imaging system, its advantages include visualization of soft tissues in real time while motion is underway. The image can be correlated to standard x-ray films, but since no ionizing radiation is involved, repeated risk-free visualization of extremities for either diagnostic assessment or biomechanical studies is permitted.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Ophthalmology, Virginia Commonwealth University, Richmond, VA, 23298, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA; Center for Pharmaceutical Engineering, Center for Drug Discovery, Department of Pediatrics, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA. Electronic address:
The opioid crisis has claimed approximately one million lives in the United States since 1999, underscoring a significant public health concern. This surge in opioid use disorder (OUD) fatalities necessitates improved therapeutic options. Current OUD therapies often require daily clinical visits, leading to poor patient compliance and high costs to the health systems.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:
Gender identification of chick embryos at the early stages of incubation is of significant importance to poultry industry. Existing studies showed reproductive hormone concentrations are associated with gender of chick embryos. Accurate detection of reproductive hormone concentration can assist in gender identification.
View Article and Find Full Text PDFNat Mater
January 2025
School of Physics and Astronomy, Beijing Normal University, Beijing, China.
The coherent spin waves, magnons, can propagate without accompanying charge transports and Joule heat dissipation. Room-temperature and long-distance spin waves propagating within nanoscale spin channels are considered promising for integrated magnonic applications, but experimentally challenging. Here we report that long-distance propagation of chiral magnonic edge states can be achieved at room temperature in manganite thin films with long, antiferromagnetically coupled spin spirals (millimetre length) and low magnetic Gilbert damping (~3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!