Acetylation accumulates PFKFB3 in cytoplasm to promote glycolysis and protects cells from cisplatin-induced apoptosis.

Nat Commun

The Fifth People's Hospital of Shanghai and the Molecular and Cell Biology Research Lab of the Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Published: February 2018

Enhanced glycolysis in cancer cells has been linked to cell protection from DNA damaging signals, although the mechanism is largely unknown. The 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) catalyzes the generation of fructose-2,6-bisphosphate, a potent allosteric stimulator of glycolysis. Intriguingly, among the four members of PFKFB family, PFKFB3 is uniquely localized in the nucleus, although the reason remains unclear. Here we show that chemotherapeutic agent cisplatin promotes glycolysis, which is suppressed by PFKFB3 deletion. Mechanistically, cisplatin induces PFKFB3 acetylation at lysine 472 (K472), which impairs activity of the nuclear localization signal (NLS) and accumulates PFKFB3 in the cytoplasm. Cytoplasmic accumulation of PFKFB3 facilitates its phosphorylation by AMPK, leading to PFKFB3 activation and enhanced glycolysis. Inhibition of PFKFB3 sensitizes tumor to cisplatin treatment in a xenograft model. Our findings reveal a mechanism for cells to stimulate glycolysis to protect from DNA damage and potentially suggest a therapeutic strategy to sensitize tumor cells to genotoxic agents by targeting PFKFB3.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5802808PMC
http://dx.doi.org/10.1038/s41467-018-02950-5DOI Listing

Publication Analysis

Top Keywords

pfkfb3
10
accumulates pfkfb3
8
pfkfb3 cytoplasm
8
enhanced glycolysis
8
glycolysis
6
acetylation accumulates
4
cytoplasm promote
4
promote glycolysis
4
glycolysis protects
4
cells
4

Similar Publications

Single-nucleus transcriptomic profiling of the diaphragm during mechanical ventilation.

Sci Rep

December 2024

Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.

Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model.

View Article and Find Full Text PDF

This work aims to explore the effect of glycolysis on the replication of porcine reproductive and respiratory syndrome virus (PRRSV) in porcine alveolar macrophages (PAMs). The changes of glucose metabolism, PRRSV protein levels, PRRSV titers, and the relative expression levels of genes and proteins in PAMs were analyzed by ELISA, qPCR, virus titration, and Western blotting after PRRSV infection. The effect of hypoxia-inducible factor-1α (HIF-1α) on PRRSV replication was subsequently assessed by specific siRNAs targeting to HIF-1α.

View Article and Find Full Text PDF

Background: The efficacy of tyrosine kinase inhibitors (TKIs) targeting the EGFR is limited due to the persistence of drug-tolerant cell populations, leading to therapy resistance. Non-genetic mechanisms, such as metabolic rewiring, play a significant role in driving lung cancer cells into the drug-tolerant state, allowing them to persist under continuous drug treatment.

Methods: Our study employed a comprehensive approach to examine the impact of the glycolytic regulator 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) on the adaptivity of lung cancer cells to EGFR TKI therapies.

View Article and Find Full Text PDF

Unlabelled: Traumatic brain injury (TBI) and subsequent neurodegeneration is partially driven by chronic inflammation both locally and systemically. Yet, current clinical intervention strategies do not mitigate inflammation sequalae necessitating the development of innovative approaches to reduce inflammation and minimize deleterious effects of TBI. Herein, a subcutaneous formulation based on polymer of alpha-ketoglutarate (paKG) delivering glycolytic inhibitor PFK15 (PFKFB3 inhibitor, a rate limiting step in glycolysis), alpha-ketoglutarate (to fuel Krebs cycle) and peptide antigen from myelin proteolipid protein (PLP139-151) was utilized as the prophylactic immunosuppressive formulation in a mouse model of TBI.

View Article and Find Full Text PDF

PFKFB3 protein in adipose tissue contributes to whole body glucose homeostasis.

FASEB J

December 2024

Department of Biochemistry and Physiology, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma, USA.

Age-dependent changes in adipose tissue are thought to play a role in development of insulin resistance. A major age-dependent change in adipose tissue is the downregulation of key proteins involved in carbohydrate metabolism. In the current study, we investigate the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) a key governor of the rate of glycolysis in adipocytes via the synthesis of fructose-2,6-bisphosphate that was significantly downregulated in aged mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!