DNA nanostructures can show dynamic responses to molecular triggers for a wide variety of applications. While DNA sequence signal triggers are now well-established, there is a critical need for a broader diversity of molecular triggers to drive dynamic responses in DNA nanostructures. DNA aptamers are ideal; they can both seamlessly integrate into DNA nanostructure scaffolds and transduce molecular recognition into functional responses. Here, we report construction and optimization of a DNA origami nanobox locked by a pair of DNA double strands where one strand is a DNA aptamer targeting the malaria biomarker protein Plasmodium falciparum lactate dehydrogenase. The protein acts as the key which enables box opening. We observe highly specific protein-mediated box opening by both transmission electron microscopy and fluorescence. Aptamer-enabled DNA boxes have significant potential for enabling direct responses to proteins and other biomolecules in nanoscale diagnostics, drug delivery and sensing devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2018.01.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!