Unlabelled: The incidence of fragility fractures is expected to increase in the near future due to an aging population. Therefore, improved tools for fracture prediction are required to treat and prevent these injuries efficiently. For such tools to succeed, a better understanding of the deformation mechanisms in bone over different length scales is needed. In this study, an experimental setup including mechanical tensile testing in combination with digital image correlation (DIC) and small/wide angle X-ray scattering (SAXS/WAXS) was used to study deformation at multiple length scales in bovine cortical bone. Furthermore, micro-CT imaging provided detailed information about tissue microstructure. The combination of these techniques enabled measurements of local deformations at the tissue- and nanoscales. The orientation of the microstructure relative to the tensile loading was found to influence the strain magnitude on all length scales. Strains in the collagen fibers were 2-3 times as high as the strains found in the mineral crystals for samples with microstructure oriented parallel to the loading. The local tissue strain at fracture was found to be around 0.5%, independent of tissue orientation. However, the maximum force and the irregularity of the crack path were higher when the load was applied parallel to the tissue orientation. This study clearly shows the potential of combining these different experimental techniques concurrently with mechanical testing to gain a better understanding of bone damage and fracture over multiple length scales in cortical bone.
Statement Of Significance: To understand the pathophysiology of bone, it is important to improve our knowledge about the deformation and fracture mechanisms in bone. In this study, we combine several recently available experimental techniques with mechanical loading to investigate the deformation mechanisms in compact bone tissue on several length scales simultaneously. The experimental setup included mechanical tensile testing in combination with digital image correlation, microCT imaging, and small/wide angle X-ray scattering. The combination of techniques enabled measurements of local deformations at the tissue- and nanoscales. The study clearly shows the potential of combining different experimental techniques concurrently with mechanical testing to gain a better understanding of structure-property-function relationships in bone tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2018.01.037 | DOI Listing |
J Neurosurg
January 2025
2Department of Radiology, Service of Interventional Neuroradiology, Centre hospitalier de l'Université de Montréal (CHUM), Montréal.
Objective: Many patients with ruptured intracranial aneurysms (RIAs) underrepresented or excluded from previous randomized controlled trials (RCTs) comparing surgery with endovascular treatment (EVT) are still considered for surgical clipping, but the best management of these patients remains unknown.
Methods: The International Subarachnoid Aneurysm Trial-2 was a randomized trial comparing surgical versus EVT of RIAs considered for surgical clipping, despite the results of previous RCTs, and also eligible for EVT. The primary endpoint was death or dependency according to the modified Rankin Scale score (mRS score > 2) at 1 year.
Objective: To compare the effectiveness of clavicular hook plates and Endobutton plates in treating unstable distal clavicle fractures (UDCFs).
Methods: Data from 95 patients with UDCFs (Neer II and V types) were retrospectively analyzed. Among them, 55 cases were treated with clavicular hook plates (control group), and 40 cases with Endobutton plates (research group).
Arch Rehabil Res Clin Transl
December 2024
Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
Objective: To determine whether robotic metrics: (1) correlate with the Nine-Hole Peg Test (9HPT; good convergent validity); and (2) differentiate between those self-reporting "some hand problems" versus "no hand problems" (good criterion validity).
Design: Cross-sectional validation analyses.
Setting: Rehabilitation research laboratory located within a hospital.
Neuropathol Appl Neurobiol
February 2025
Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China.
Background: Progressive external ophthalmoplegia (PEO) is a classic manifestation of mitochondrial disease. However, the link between its genetic characteristics and clinical presentations remains poorly investigated.
Methods: We analysed the clinical, pathological and genetic characteristics of a large cohort of patients with PEO, based on the type of their mtDNA variations.
Adv Mater
January 2025
Third Institute of Physics - Biophysics, Georg August University, Friedrich-Hund Platz 1, 37077, Göttingen, Germany.
In the burgeoning field of super-resolution fluorescence microscopy, significant efforts are being dedicated to expanding its applications into the 3D domain. Various methodologies have been developed that enable isotropic resolution at the nanometer scale, facilitating the visualization of 3D subcellular structures with unprecedented clarity. Central to this progress is the need for reliable 3D structures that are biologically compatible for validating resolution capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!