Apaf-1 is a cytosolic multi-domain protein in the apoptosis regulatory network. When cytochrome c releases from mitochondria; it binds to WD-40 repeats of Apaf-1 molecule and induces oligomerization of Apaf-1. Here in, a split luciferase assay was used to compare apoptosome formation in cell-free and cell-based systems. This assay uses Apaf-1 tagged with either N-terminal fragment or C-terminal fragment of P. pyralis luciferase. In cell based-system, the apoptosome formation is induced inside the cells which express Apaf-1 tagged with complementary fragments of luciferase while in cell-free system, the apoptosome formation is induced in extracts of the cells. In cell-free system, cytochrome c dependent luciferase activity was observed with full length Apaf-1. However, luciferase activity due to apoptosome formation was much higher in cell based system compared to cell-free system. The truncated Apaf-1 which lacks WD-40 repeats (ΔApaf-1) interacted with endogenous Apaf-1 in a different fashion compared to native form as confirmed by different retention time of eluate in gel filtration and binding to affinity column. The interactions between endogenous Apaf-1 and ΔApaf-1 is stronger than its interaction with native exogenous Apaf-1 as indicated by dominant negative effect of ΔApaf-1 on caspase-3 processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5856089 | PMC |
http://dx.doi.org/10.1016/j.abb.2018.01.017 | DOI Listing |
Biochemistry
January 2025
Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg 405 30, Sweden.
Saudi Pharm J
December 2024
Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah-11952, Saudi Arabia.
Cytochrome is a vital electron carrier in the mitochondrial respiratory chain. When the outer membrane of mitochondria becomes permeable, cytochrome is discharged into the cytoplasm, where it initiates the intrinsic apoptosis pathway. The complex interaction between cytochrome and apoptosis protease-activating factor-1 (Apaf-1) leads to the formation of the apoptosome and activation of a cascade of caspases, highlighting the critical role of cytochrome in controlling cell death mechanisms.
View Article and Find Full Text PDFCancer Lett
November 2024
2nd Ward of Oncology and Hematology Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China. Electronic address:
KRAS mutation-driven pancreatic ductal adenocarcinoma (PDAC) represents a major challenge in medicine due to late diagnosis and treatment resistance. Here, we report that macroautophagy (hereafter autophagy), a cellular degradation and recycling process, contributes to acquired resistance against novel KRAS-targeted therapy. The KRAS protein inhibitor MRTX1133 induces autophagy in KRAS-mutated PDAC cells by blocking MTOR activity, and increased autophagic flux prevents apoptosis.
View Article and Find Full Text PDFCell Death Dis
September 2024
Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany.
Cell death is a fundamental process in health and disease. Emerging research shows the existence of numerous distinct cell death modalities with similar and intertwined signaling pathways, but resulting in different cellular outcomes, raising the need to understand the decision-making steps during cell death signaling. Paracetamol (Acetaminophen, APAP)-induced hepatocyte death includes several apoptotic processes but eventually is executed by oncotic necrosis without any caspase activation.
View Article and Find Full Text PDFCutan Ocul Toxicol
December 2024
Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran.
Introduction: Melanoma is known as a highly lethal cancer. In melanoma cells, apoptosis signalling which relies heavily on the acute activity of mitochondria and reactive oxygen species (ROS) formation is suppressed. Our previous studies on natural compounds on melanoma suggested that mitochondria are a potential target for the melanoma treatment by selective cytotoxic effect of them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!