Influence of Niobium Pentoxide Particulates on the Properties of Brushite/Gelatin/Alginate Membranes.

J Pharm Sci

Department of Chemical Engineering, Loughborough University, Loughborough LE113TU, Leicestershire, UK. Electronic address:

Published: May 2018

Novel nonporous membranes were prepared by impregnating brushite and niobium pentoxide (NbO) into a gelatin/alginate matrix. The physicochemical properties, morphology, and mechanical properties of the prepared membranes were characterized using X-ray diffractometer, FTIR spectroscopy, scanning electron microscopy, transmission electron microscopy, and universal testing machine, respectively. Swelling ability of the prepared membranes was determined in distilled water. The surfaces of the membranes were characterized by means of FTIR spectroscopy and scanning electron microscopy coupled with energy dispersive x-ray spectroscopy after submersion in simulated body fluid up to 15 days. Moreover, the calcium and phosphorus ion concentrations in the simulated body fluid were measured using an UV spectrophotometer. The in vitro drug release and the release mechanism of a model antibiotic, namely, ciprofloxacin (CFX), were tested in phosphate-buffered saline for 15 days. The antibacterial activities of the CFX-loaded membranes were tested against known microorganisms. The physicochemical properties, morphology, mechanical properties, and swelling ability of the prepared membranes were found to be dependent on the presence of NbO allowing control of their properties. For example, the NbO-loaded membranes exhibited a higher in vitro bioactivity and slower drug release compared to those of NbO-free membranes. The CFX-loaded membranes also exhibited an excellent inhibition zones against the selected microorganisms. Overall, the prepared membranes have been found to be very promising for use in bone substitute applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2018.01.014DOI Listing

Publication Analysis

Top Keywords

prepared membranes
16
electron microscopy
12
membranes
11
niobium pentoxide
8
physicochemical properties
8
properties morphology
8
morphology mechanical
8
mechanical properties
8
membranes characterized
8
ftir spectroscopy
8

Similar Publications

Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.

View Article and Find Full Text PDF

The urgent need for sustainable, low-emission energy solutions has positioned proton exchange membrane fuel cells (PEMFCs) as a promising technology in clean energy conversion. Polysulfone (PSF) membranes with incorporated ionic liquid (IL) and hydrophobic polydimethylsiloxane-functionalized silica (SiO-PDMS) were developed and characterized for their potential application in PEMFCs. Using a phase inversion method, membranes with various combinations of PSFs, SiO-PDMS, and 1-butyl-3-methylimidazolium triflate (BMI.

View Article and Find Full Text PDF

Enhanced Performance and Durability of Pore-Filling Membranes for Anion Exchange Membrane Water Electrolysis.

Membranes (Basel)

December 2024

Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.

Four distinct pore-filling anion exchange membranes (PFAEMs) were prepared, and their mechanical properties, ion conductivity, and performance in anion exchange membrane water electrolysis (AEMWE) were evaluated. The fabricated PFAEMs demonstrated exceptional tensile strength, which was approximately 14 times higher than that of the commercial membrane, despite being nearly half as thin. Ion conductivity measurements revealed that acrylamide-based membranes outperformed benzyl-based ones, exhibiting 25% and 41% higher conductivity when using crosslinkers with two and three crosslinking sites, respectively.

View Article and Find Full Text PDF

Electrodialysis (ED) has already been applied to recover nickel in galvanizing processes, allowing nickel recovery and the production of a treated effluent with demineralized water quality. However, the growth in ED use is still limited by the production and commercialization of ion-selective membranes, currently limited to a few large companies. Therefore, this paper presents the development of homogeneous cationic and anionic membranes made from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for ED use.

View Article and Find Full Text PDF

The impeding ban on per- and polyfluoroalkyl substances (PFAS) prompted researchers to focus on hydrocarbon-based materials as constituents of next-generation proton exchange membranes (PEMs) for polymer electrolyte fuel cells (PEFCs). Here, we report on the fuel cell performance and durability of fluorine-lean PEMs prepared by the post-sulfonation of co-grafted α-methylstyrene (AMS) and 2-methylene glutaronitrile (MGN) monomers into preirradiated 12 µm polyvinylidene fluoride (PVDF) base film. The membranes were subjected to two distinctly different accelerated stress test (AST) protocols performed at open-circuit voltage (OCV): the US Department of Energy-similar chemical AST (90 °C, 30% relative humidity (RH), H/air, 1 bar), developed originally for perfluoroalkylsulfonic acid (PFSA) membranes, and the high relative humidity AST (80 °C, 100% RH, H/O, 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!