Oncogenic RAS and deregulated transforming growth factor-beta (TGF)-β signaling have been implicated in several cancers. So far, attempts to target either one of them therapeutically have been futile as both of them are involved in multiple fundamental cellular processes and the normal forms are expressed by almost all cells. Hence, their inhibition would disrupt several physiological processes. Besides, their downregulation stimulates the tumor cells to develop adaptive mechanisms and would most likely be ineffective as therapeutic targets. Furthermore, growing literature suggests that both of these signaling pathways converge to enhance tumor development. Therefore, a lot of interest has been generated to explore the areas where these pathways interface that might identify new molecules that could potentially serve as novel therapeutic targets. In this review, we focus on such convergent signaling and cross-interaction that is mediated by neuropilin-1 (NRP1), a receptor that can interact with multiple growth factors including TGF-β for promoting tumorigenesis process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072630PMC
http://dx.doi.org/10.1016/j.semcancer.2018.01.014DOI Listing

Publication Analysis

Top Keywords

transforming growth
8
growth factor-beta
8
factor-beta tgf-β
8
tgf-β signaling
8
neuropilin-1 nrp1
8
therapeutic targets
8
genetic status
4
status kras
4
kras influences
4
influences transforming
4

Similar Publications

Unlabelled: Fibroblasts are considered a key player in the wound healing process. Although this cellular family is constituted by several distinct subtypes, dermal fibroblasts are crucial thanks to their ability to secrete pro-regenerative growth factors, extracellular matrix (ECM) proteins and their immune and anti-inflammatory role. Sophorolipids (SL), sophorosides (SS) and glucolipids (G), mono-unsaturated (C18:1) or saturated (C18:0), glycolipids derived from microbial fermentation of wild type or engineered yeast , constitute a novel sustainable class of bio-based chemicals with interesting physicochemical characteristics, which allow them to form soft diverse structures from hydrogels to vesicles, micelles or complex coacervates with potential interest in skin regeneration applications.

View Article and Find Full Text PDF

Objective: The aim of this study is to investigate the protective effect of Cannabidiol (CBD) on DSS-induced colitis in C57BL/6 mice and its related pathways.

Methods: A mouse model of ulcerative colitis (US) was induced by DSS. Enzyme-linked immunosorbent assay (ELISA), quantitative reverse transcription polymerase-chain reaction (qRT-PCR), Western blot (WB) and immunofluorescence (IF) were used to identify the key factors involved in inflammatory response, oxidative stress and intestinal fibrosis.

View Article and Find Full Text PDF

Background: Septic cardiomyopathy is a common complication of septic shock and organ dysfunction. ITCH is a HECT (homologous to the E6-AP carboxyl-terminus)-type ubiquitin E3 ligase that plays a critical role in inflammatory suppression. Herein, we focused on the interaction between ITCH and key regulators of nuclear factor-κB (NF-κB), such as tumor necrosis factor receptor-associated factor 6 (TRAF6) and transforming growth factor-β activated kinase 1 (TAK1), and examined the impact of ITCH on the development of septic cardiomyopathy.

View Article and Find Full Text PDF

The multifaceted role of SMAD4 in immune cell function.

Biochem Biophys Rep

March 2025

Changchun Medical College, 6177, Jilin Street, Changchun, 130031, China.

The Transforming Growth Factor-beta (TGF-β) signaling pathway, with SMAD4 as its central mediator, plays a pivotal role in regulating cellular functions, including growth, differentiation, apoptosis, and immune responses. While extensive research has elucidated SMAD4's role in tumorigenesis, its functions within immune cells remain underexplored. This review synthesizes current knowledge on SMAD4's diverse roles in various immune cells such as T cells, B cells, dendritic cells, and macrophages, highlighting its impact on immune homeostasis and pathogen response.

View Article and Find Full Text PDF

High BMP7 Expression May Worsen Airway Disease in COPD by Altering Epithelial Cell Behavior.

Int J Chron Obstruct Pulmon Dis

January 2025

Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.

Purpose: Airway disease is the main pathological basis of chronic obstructive pulmonary disease (COPD), but the underlying mechanisms are unknown. Bone morphogenetic protein-7 (BMP7) is a multi-functional growth factor that belongs to the transforming growth factor superfamily, which affects the regulation of proliferation, differentiation, and apoptosis. Previous research has shown that BMP7 is highly expressed in the airway epithelia of patients with COPD, but its role in airway disease has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!