Background: Oncology drugs are only effective in a small proportion of cancer patients. Our current ability to identify these responsive patients before treatment is still poor in most cases. Thus, there is a pressing need to discover response markers for marketed and research oncology drugs. Screening these drugs against a large panel of cancer cell lines has led to the discovery of new genomic markers of in vitro drug response. However, while the identification of such markers among thousands of candidate drug-gene associations in the data is error-prone, an appraisal of the effectiveness of such detection task is currently lacking.

Methods: Here we present a new non-parametric method to measuring the discriminative power of a drug-gene association. Unlike parametric statistical tests, the adopted non-parametric test has the advantage of not making strong assumptions about the data distorting the identification of genomic markers. Furthermore, we introduce a new benchmark to further validate these markers in vitro using more recent data not used to identify the markers.

Results: The application of this new methodology has led to the identification of 128 new genomic markers distributed across 61% of the analysed drugs, including 5 drugs without previously known markers, which were missed by the MANOVA test initially applied to analyse data from the Genomics of Drug Sensitivity in Cancer consortium.

Conclusions: Discovering markers using more than one statistical test and testing them on independent data is unusual. We found this helpful to discard statistically significant drug-gene associations that were actually spurious correlations. This approach also revealed new, independently validated, in vitro markers of drug response such as Temsirolimus-CDKN2A (resistance) and Gemcitabine-EWS_FLI1 (sensitivity).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5801688PMC
http://dx.doi.org/10.1186/s12920-018-0336-zDOI Listing

Publication Analysis

Top Keywords

genomic markers
16
drug response
12
markers
10
markers drug
8
discriminative power
8
oncology drugs
8
markers vitro
8
drug-gene associations
8
drugs
5
data
5

Similar Publications

Photosynthetic microalgae are promising green cell factories for the sustainable production of high-value chemicals and biopharmaceuticals. The chloroplast organelle is being developed as a chassis for synthetic biology as it contains its own genome (the plastome) and some interesting advantages, such as high recombinant protein titers and a diverse and dynamic metabolism. However, chloroplast engineering is currently hampered by the lack of standardized cloning tools and Design-Build-Test-Learn workflows to ease genomic and metabolic engineering.

View Article and Find Full Text PDF

Sleeve Gastrectomy and Gastric Bypass Impact in Patient's Metabolic, Gut Microbiome, and Immuno-inflammatory Profiles-A Comparative Study.

Obes Surg

January 2025

Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.

Background: Bariatric surgery is the most long-term effective treatment option for severe obesity. The role of gut microbiome (GM) in either the development of obesity or in response to obesity management strategies has been a matter of debate. This study aims to compare the impact of two of the most popular procedures, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (GB), on metabolic syndrome parameters and gut bacterial microbiome and in systemic immuno-inflammatory response.

View Article and Find Full Text PDF

India harbours a substantial population of 9.43 million dogs, showcasing diverse phenotypes and utility. Initiatives focusing on awareness, conservation and informed breeding can greatly enhance the recognition and welfare of the unique Indian canine heritage.

View Article and Find Full Text PDF

Gastric cancer is an aggressive malignancy characterized by significant clinical heterogeneity arising from complex genetic and environmental interactions. This study employed single-cell RNA sequencing, using the 10 × Genomics platform, to analyze 262,532 cells from gastric cancer samples, identifying 32 distinct clusters and 10 major cell types, including immune cells (e.g.

View Article and Find Full Text PDF

Identification of chromosomal abnormalities is an important issue in animal breeding and veterinary medicine. Routine cytogenetic diagnosis of domestic animals began in the 1960s with the aim of identifying carriers of centric fusion between chromosome 1 and 29 in cattle. In the 1970s, chromosome banding techniques were introduced, and in the 1980s, the first cytogenomic techniques, based on the development of locus- and chromosome-specific probes, were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!