Here, we report a simple strategy to prepare highly sensitive surface-enhanced Raman spectroscopy (SERS) substrates based on Ag decorated CuO nanoparticles by combining two common techniques, viz, thermal oxidation growth of CuO nanoparticles and magnetron sputtering fabrication of a Ag nanoparticle film. Methylene blue is used as the Raman analyte for the SERS study, and the substrates fabricated under optimized conditions have very good sensitivity (analytical enhancement factor ∼10), stability, and reproducibility. A linear dependence of the SERS intensities with the concentration was obtained with an R value >0.9. These excellent properties indicate that the substrate has great potential in the detection of biological and chemical substances.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aaa72bDOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
cuo nanoparticles
8
simple synthesize
4
synthesize large-scale
4
large-scale cuo/ag
4
cuo/ag nanoflowers
4
nanoflowers ultrasensitive
4
ultrasensitive surface-enhanced
4
raman scattering
4
scattering detection
4

Similar Publications

This paper introduces a highly absorbent and sensitive cellulose nanofiber (CNF)/gold nanorod (GNR)@Ag surface-enhanced Raman scattering (SERS) sensor, fabricated using the vacuum filtration method. By optimizing the Ag thickness in the GNR@Ag core-shell structures and integrating them with CNFs, optimal SERS hotspots were identified using the Raman probe molecule 4-aminothiophenol (4-ATP). To concentrate pesticides extracted from fruit and vegetable surfaces, we utilized the evaporation enrichment effect using hydrophilic CNF and hole-punched hydrophobic polydimethylsiloxane (PDMS).

View Article and Find Full Text PDF

Single-Injection Composite Tracer Achieves Intraoperative Dual-Tracing and Precise Localization of Sentinel Lymph Nodes.

ACS Appl Mater Interfaces

January 2025

Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China.

The use of dual-tracer contrast agents in clinical applications, such as sentinel lymph node (SLN) identification, offers significant advantages including enhanced accuracy, sensitivity, as well as comprehensive and multimodal visualization. In the current clinical practice, SLNs are typically marked prior to surgical resection by multiple and sequential injections of two tracers, the radioactive tracer and methylene blue (MB) dye. This imposes physical and psychological burden on patients and medical staff.

View Article and Find Full Text PDF

MXene-based SERS spectroscopic analysis of exosomes for lung cancer differential diagnosis with deep learning.

Biomed Opt Express

January 2025

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, 200093 Shanghai, China.

Lung cancer with heterogeneity has a high mortality rate due to its late-stage detection and chemotherapy resistance. Liquid biopsy that discriminates tumor-related biomarkers in body fluids has emerged as an attractive technique for early-stage and accurate diagnosis. Exosomes, carrying membrane and cytosolic information from original tumor cells, impart themselves endogeneity and heterogeneity, which offer extensive and unique advantages in the field of liquid biopsy for cancer differential diagnosis.

View Article and Find Full Text PDF

A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

Surface-enhanced Raman scattering has been widely used for molecular/material characterization and chemical and biological sensing and imaging applications. In particular, plasmonic nanogap-enhanced Raman scattering (NERS) is based on the highly localized electric field formed within the nanogap between closely spaced metallic surfaces to more strongly amplify Raman signals than the cases with molecules on metal surfaces. Nanoparticle-based NERS offers extraordinarily strong Raman signals and a plethora of opportunities in sensing, imaging and many different types of biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!