Lyme neuroborreliosis, caused by the gram-negative bacterium Borrelia burgdorferi, may affect the central and/or peripheral nervous systems. In previous studies, we showed that human oligodendrocytes exposed to the bacteria undergo apoptosis in an inflammatory environment, and that inflammatory pathways trigger cell-death pathways. We further demonstrated that several receptor tyrosine kinases were involved in triggering downstream effects, leading to inflammation and apoptosis. Toll-like receptors TLR2 and TLR5, which are commonly studied receptors in Lyme disease, only had a minimal role in inflammatory processes. To delineate the role of other TLRs, if any, real-time RT-PCR array experiments were carried out as an initial screen. Along with several inflammatory genes, TLR7 mRNA was upregulated in cells exposed to B. burgdorferi. Further analysis by immunohistochemistry showed that the TLR7 protein is present in readily detectable amounts, although no discernible differences could be seen between medium and B. burgdorferi-exposed cells by this technique. Nevertheless, use of specific inhibitors and siRNA showed that TLR7 is involved in inducing IL-6 and CCL2 in a dose dependent manner, and likely CXCL8. Triggering an intracellular receptor such as TLR7, which senses RNA, in typically non-phagocytic oligodendrocytes indicates either a niche for the bacterium inside the cell or novel uptake of nucleic acids to initiate inflammatory responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889718 | PMC |
http://dx.doi.org/10.1016/j.neulet.2018.01.058 | DOI Listing |
FEBS J
January 2025
Department of Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Germany.
Creatine is essential for ATP regeneration in energy-demanding cells. Creatine deficiency results in severe neurodevelopmental impairments. In the brain, creatine is synthesized locally by oligodendrocytes to supply neighboring neurons.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pathology and Laboratory Medicine, Baylor Scott and White Medical Center, Baylor College of Medicine, Temple, TX, USA.
Background: Brain intraparenchymal schwannoma is a rare clinical entity, generally curable with adequate resection.
Methods And Results: We describe a case in a male patient first presenting at 19 months of age, the youngest reported age for this lesion. It also appears to be the first case connected to a germline TSC2 p.
Sci Rep
January 2025
Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Abassia, Cairo, Egypt.
Some patients with neuromyelitis optica spectrum disorder (NMOSD)-like symptoms test negative for anti-aquaporin-4 (anti-AQP4) antibodies. Among them, a subset has antibodies targeting myelin oligodendrocyte glycoprotein (MOG), a condition now termed MOG antibody-associated disease (MOGAD). MOGAD shares features with NMOSD, like optic neuritis and myelitis, but differs in pathophysiology, clinical presentation, imaging findings, and biomarkers.
View Article and Find Full Text PDFeNeuro
January 2025
Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA.
To develop reparative therapies for neurological disorders like multiple sclerosis (MS), we need to better understand the physiology of loss and replacement of oligodendrocytes, the cells that make myelin and are the target of damage in MS. In vivo two-photon fluorescence microscopy allows direct visualization of oligodendrocytes in the intact brain of transgenic mouse models, promising a deeper understanding of the longitudinal dynamics of replacing oligodendrocytes after damage. However, the task of tracking the fate of individual oligodendrocytes requires extensive effort for manual annotation and is especially challenging in three-dimensional images.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
Background: Cerebral small vessel disease (cSVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although risk factors for cSVD have been identified, little is known about the biological processes and molecular mediators that influence cSVD development and progression.
Methods: Within the Atherosclerosis Risk in Communities (ARIC) study, we used SomaScan Multiplexed Proteomic technology to relate 4,877 plasma proteins to concurrently measured MRI‐defined cSVD characteristics, including WMHs, CMHs, and lacunar infarcts, in late‐life (n=1508; mean age: 76).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!