Insights into the toxicity of iron oxides nanoparticles in land snails.

Comp Biochem Physiol C Toxicol Pharmacol

Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece. Electronic address:

Published: April 2018

The use of manufactured nanoparticles (NPs) is spreading rapidly across technology and medicine fields, posing concerns about their consequence on ecosystems and human health. The present study aims to assess the biological responses triggered by iron oxide NPs (IONPs) and iron oxide NPs incorporated into zeolite (IONPZ) in relation to oxidative stress on the land snail Helix aspersa in order to investigate its use as a biomarker for terrestrial environments. Morphology and structure of both NPs were characterized. Snail food was supplemented with a range of concentrations of IONPs and IONPZ and values of the hemocyte lysosomal membranes' destabilization by 50% were estimated by the neutral red retention (NRRT50) assay. Subsequently, snails were fed with NPs concentrations equal to half of the NRRT50 values, 0.05 mg L for IONPs and 1 mg L for IONPZ, for 1, 5, 10 and 20 days. Both effectors induced oxidative stress in snails' hemocytes compared to untreated animals. The latter was detected by NRRT changes, reactive oxygen species (ROS) production, lipid peroxidation estimation, DNA integrity loss, measurement of protein carbonyl content by an enzyme-linked immunoabsorbent assay (ELISA), determination of ubiquitin conjugates and cleaved caspases conjugates levels. The results showed that the simultaneous use of the parameters tested could constitute possible reliable biomarkers for the evaluation of NPs toxicity. However, more research is required in order to enlighten the disposal and toxic impact of iron oxide NPs on the environment to ensure their safe use in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2018.02.001DOI Listing

Publication Analysis

Top Keywords

iron oxide
12
oxide nps
12
oxidative stress
8
nps
7
insights toxicity
4
iron
4
toxicity iron
4
iron oxides
4
oxides nanoparticles
4
nanoparticles land
4

Similar Publications

The recovery of valuable materials from spent lithium-ion batteries (LIBs) has experienced increasing demand in recent years. Current recycling technologies are typically energy-intensive and are often plagued by high operation costs, low processing efficiency, and environmental pollution concerns. In this study, an efficient and environmentally friendly dielectrophoresis (DEP)-based approach is proposed to separate the main components of "black mass" mixtures from LIBs, specifically lithium iron phosphate (LFP) and graphite, based on their polarizability differences.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

This study investigates the biosynthesis of iron oxide nanoparticles (FeONPs) using the cell-free supernatant of Pseudomonas fluorescens. The synthesized FeONPs were characterized through UV-VIS, XRD, FTIR, FESEM, EDX, TEM, BET, and VSM analyses. The XRD results confirmed that FeONPs were successfully synthesized and EDX analysis indicated that iron accounted for 89.

View Article and Find Full Text PDF

Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!