Nitrogen-doped carbon (N-C) is pyrolytically prepared by using the nanocomposites of graphene Quantum dots (GQDs) and chitosan (CS) as the precursor. Due to the existence of GQDs nanofiller, the three-dimensional (3D) interconnected frameworks of CS are well preserved after the pyrolysis treatment; meanwhile, CS in the nanocomposites functions as nitrogen source for the N-C. The obtained N-C exhibits a considerable specific capacitance (545Fg at 1Ag), high rate capability and excellent cyclic stability (88.9% capacitance retention after 5000cycles at 10Ag) when it is used as the electrode materials in supercapacitors. The well-preserved 3D frameworks and N-doping are believed to be responsible for the excellent supercapacitive behaviors of the N-C.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.02.014 | DOI Listing |
J Fluoresc
January 2025
School of Science, Jiangnan University, Wuxi, 214122, China.
In this study, nitrogen-doped carbon nanodots (N-CDs) with temperature and fluorescence sensing were prepared via hydrothermal method using L-lysine and ethylenediamine as precursors. The synthesized N-CDs exhibited spherical morphology with sizes ranging from 2.8 to 5.
View Article and Find Full Text PDFChemistry
January 2025
Shanghai Jiaotong University: Shanghai Jiao Tong University, College of Smart Energy, CHINA.
Transition-metal nitrides (TMNs) have garnered considerable attention for energy conversion applications owing to their exceptional electronic structures and high catalytic activities. However, the scarcity of active sites in TMNs impedes their large-scale application. This study describes the use of wetness impregnation and ionic-liquid methods to enhance the electrocatalytic efficiency of molybdenum nitride (MoN) atomic clusters finely dispersed on nitrogen-doped carbon (MoN@NC) substrates.
View Article and Find Full Text PDFJ Fluoresc
January 2025
College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, P.R. China.
Fluorescent carbon quantum dots (CDs) have received widespread attention for their potential applications in optical sensing. Meanwhile, as the importance of mercury ion (Hg) detection in the environment, the exploration of Hg fluorescent nanosensor based on CDs with high quantum yield is particularly intriguing. Herein, nitrogen-doped carbon quantum dots (N-CDs) were prepared by microwave method using citric acid as carbon source and urea as nitrogen source, and glycerol as microwave solvent.
View Article and Find Full Text PDFSmall
January 2025
Department of Material Science Engineering, Gachon University, Seongnamdaero 1342, Seongnam, 13120, Republic of Korea.
Herein, NaCl-templated mesoporous hard carbons (NMCs) have been designed and engineered with tunable surface properties as anode materials for potassium-ion batteries (KIBs) and hybrid capacitors (KICs). By utilizing "water-in-oil" emulsions, the size of NaCl templates is precisely modified, leading to smaller particles that enable the formation of primary carbon structures with reduced particle size and secondary structures with 3D interconnected mesoporosity. These features significantly enhance electrode density, reduce particle-to-particle resistance, and improve electrolyte wettability.
View Article and Find Full Text PDFChemSusChem
January 2025
Jilin University, School of Materials Science and Engineering, Renmin street 5988, School of Materials Science and Engineering, Jilin University, 130022, Changchun, CHINA.
Metal selenides hold promise as feasible anode materials for potassium-ion batteries (PIBs), but still face problems such as poor potassium storage kinetics and dramatic volume expansion. Coupling heterostructure engineering with structural design could be an effective strategy for rapid and stable K+ storage. Herein, CoSe/MoSe2 heterojunction encapsulated in nitrogen-doped carbon polyhedron and further interconnected by three-dimensional nitrogen-doped carbon nanofibers (CoMoSe@NCP/NCFs) is ingeniously constructed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!