When a transmembrane channel isn't, or how biophysics and biochemistry (mis)communicate.

Biochim Biophys Acta Biomembr

Department of Bioengineering, University of Washington, Seattle, WA 98105, USA. Electronic address:

Published: May 2018

Annexins are a family of soluble proteins that bind to acidic phospholipids such as phosphatidylserine in a calcium-dependent manner. The archetypical member of the annexin family is annexin A5. For many years, its function remained unknown despite the availability of a high-resolution structure. This, combined with the observations of specific ion conductance in annexin-bound membranes, fueled speculations about the possible membrane-spanning forms of annexins that functioned as ion channels. The channel hypothesis remained controversial and did not gather sufficient evidence to become accepted. Yet, it continues to draw attention as a framework for interpreting indirect (e.g., biochemical) data. The goal of the mini-review is to examine the data on annexin-lipid interactions from the last ~30 years from the point of view of the controversy between the two lines of inquiry: the well-characterized peripheral assembly of the annexins at membranes vs. their putative transmembrane insertion. In particular, the potential role of lipid rearrangements induced by annexin binding is highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2018.02.002DOI Listing

Publication Analysis

Top Keywords

transmembrane channel
4
channel biophysics
4
biophysics biochemistry
4
biochemistry miscommunicate
4
miscommunicate annexins
4
annexins family
4
family soluble
4
soluble proteins
4
proteins bind
4
bind acidic
4

Similar Publications

TMC7 is required for spermiogenesis and male fertility by regulating TGN-derived vesicles.

Int J Biol Macromol

December 2024

State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Infertility affects 10-12 % of couples worldwide, 50 % of which are male. Abnormal spermatogenesis is among the main causes of male infertility. We were curious about the possible role of transmembrane channel-like protein 7 (TMC7) in spermatogenesis because of its aberrant expression in several male infertility patients.

View Article and Find Full Text PDF

Polar Networks Mediate Ion Conduction of the SARS-CoV-2 Envelope Protein.

J Am Chem Soc

December 2024

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.

The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.

View Article and Find Full Text PDF

Shenxian-Shengmai (SXSM) is a Chinese patent medicine used in the treatment of sick sinus syndrome (SSS). However, its active chemical compounds and the underlying molecular mechanisms remain unclear. In this study, we researched the underlying mechanisms of SXSM in treating SSS.

View Article and Find Full Text PDF

Cryo-EM structure of the human Pannexin-3 channel.

Biochem Biophys Res Commun

December 2024

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan. Electronic address:

Pannexin-3 (PANX3) is a member of the pannexin family of large-pore, ATP-permeable channels conserved across vertebrates. PANX3 contributes to various developmental and pathophysiological processes by permeating ATP and Ca ions; however, the structural basis of PANX3 channel function remains unclear. Here, we present the cryo-EM structure of human PANX3 at 2.

View Article and Find Full Text PDF

The molecular basis of pH sensing by the human fungal pathogen TOK potassium channel.

iScience

December 2024

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.

Two-pore domain, outwardly rectifying potassium (TOK) channels are exclusively expressed in fungi. Human fungal pathogen TOK channels are potential antifungal targets, but TOK channel modulation in general is poorly understood. Here, we discovered that TOK (CaTOK) is regulated by extracellular pH, in contrast to TOK channels from other fungal species tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!