Wireless capsule endoscopy (WCE) is capable of demonstrating the entire gastrointestinal tract at an expense of exhaustive reviewing process for detecting bleeding disorders. The main objective is to develop an automatic method for identifying the bleeding frames and zones from WCE video. Different statistical features are extracted from the overlapping spatial blocks of the preprocessed WCE image in a transformed color plane containing green to red pixel ratio. The unique idea of the proposed method is to first perform unsupervised clustering of different blocks for obtaining two clusters and then extract cluster based features (CBFs). Finally, a global feature consisting of the CBFs and differential CBF is used to detect bleeding frame via supervised classification. In order to handle continuous WCE video, a post-processing scheme is introduced utilizing the feature trends in neighboring frames. The CBF along with some morphological operations is employed to identify bleeding zones. Based on extensive experimentation on several WCE videos, it is found that the proposed method offers significantly better performance in comparison to some existing methods in terms of bleeding detection accuracy, sensitivity, specificity and precision in bleeding zone detection. It is found that the bleeding detection performance obtained by using the proposed CBF based global feature is better than the feature extracted from the non-clustered image. The proposed method can reduce the burden of physicians in investigating WCE video to detect bleeding frame and zone with a high level of accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2017.12.014DOI Listing

Publication Analysis

Top Keywords

bleeding detection
12
wce video
12
proposed method
12
bleeding
9
cluster based
8
wireless capsule
8
capsule endoscopy
8
global feature
8
detect bleeding
8
bleeding frame
8

Similar Publications

Detecting Hemorrhagic Myocardial Infarction With 3.0-T CMR: Insights Into Spatial Manifestation, Time-Dependence, and Optimal Acquisitions.

JACC Cardiovasc Imaging

January 2025

Department of Radiology and Imaging Sciences and Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:

Background: Hemorrhagic myocardial infarction (hMI) can rapidly diminish the benefits of reperfusion therapy and direct the heart toward chronic heart failure. T2∗ cardiac magnetic resonance (CMR) is the reference standard for detecting hMI. However, the lack of clarity around the earliest time point for detection, time-dependent changes in hemorrhage volume, and the optimal methods for detection can limit the development of strategies to manage hMI.

View Article and Find Full Text PDF

Clinical atrial fibrillation (AF) is a well-established major risk factor for stroke and systemic embolism. Pivotal trials have shown that treatment with oral anticoagulation reduces the risk of stroke and systemic embolism in clinical AF with a simultaneous increase in the risk of major bleeding. To help balance the risk of stroke and bleeding in clinical AF, different prediction models including biomarkers and clinical features have been validated.

View Article and Find Full Text PDF

Laboratory Assessment of Factor VIII Inhibitors: When Is It Required? A Perspective Informed by Local Practice.

J Clin Med

December 2024

Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia.

This perspective discusses the critical role of laboratory assessments in assessing factor VIII (FVIII) inhibitors. These are auto- and alloantibodies that can develop against both endogenous and exogenous FVIII, respectively. Assessment for inhibitors represents a key part of the management of both congenital hemophilia A (CHA), an inherited deficiency, and acquired hemophilia A (AHA), an autoimmune condition.

View Article and Find Full Text PDF

Magnetic Induction Phase Difference for Cerebral Hemorrhage Detection.

Sensors (Basel)

December 2024

Department of Biomedical Engineering, Army Medical University, The Third Military Medical University, Chongqing 400038, China.

Magnetic induction phase shift is a promising technology for the detection of cerebral hemorrhage, owing to its nonradioactive, noninvasive, and real-time detection properties. To enhance the detection sensitivity and linearity, a zero-flow sensor was proposed. The uniform primary magnetic field and its counteraction were achieved.

View Article and Find Full Text PDF

Purpose: Pathological nipple discharge (PND) is associated with malignancy. This study aimed to investigate the value of fiberoptic ductoscopy (FDS) and the feasibility of immediate injection of methylene blue after FDS to identify discharging ducts and intraductal lesions without overflow of methylene blue during surgery.

Methods: From May 2019 to December 2023, 164 PND patients were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!