Unexplored antifungal activity of linear battacin lipopeptides against planktonic and mature biofilms of C. albicans.

Eur J Med Chem

School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand. Electronic address:

Published: February 2018

Novel antifungal agents are required against pathogenic fungi such as Candida albicans. We report the anticandidal activity of battacin lipopeptide antibiotics with previously unexplored antifungal activity. From amongst sixteen battacin lipopeptides tested against C. alibicans (SC5314) the 4-methyl hexanoyl conjugated trimeric lipopeptide 13 emerged as the lead candidate with a MIC of 6.25 μM and negligible haemolysis of mouse red blood cells. The potency of this lipopeptide was maintained under acidic conditions. Additionally, antifungal activity was further enhanced with amphotericin B at its non-haemolytic concentrations. Herein we have demonstrated for the first time that battacin lipopeptides prevent C. albicans biofilm colonisation as well as inhibit pre-formed biofilms of this fungal pathogen. XTT biofilm assays revealed that 13 prevented colonisation of C. albicans biofilms at its MIC (6.25 μM) and, at a higher concentration, eradicated 24 h (25 μM) and 48 h (62.5 μM) old preformed biofilms. In comparison, we found that amphotericin at much lower concentrations prevented biofilm colonisation (0.78 μM) and inhibited 24 h old preformed biofilms (6.25 μM), however was completely inactive against 48 h old preformed biofilms. Thus, lipopeptide 13 is more effective than amphotericin at eradicating more mature C. albicans biofilms. The membrane lytic mechanism of action of compound 13 was validated by a colorimetric assay using lipid vesicles mimicking fungal membranes in which compound 13 effected an immediate dark purple to red colour transition of suspended vesicles upon peptide interaction. In addition, TEM images of C. albicans cells exposed to 13 showed clearly disrupted cellular membranes. Interestingly, compound 13 increased the endogenous generation of reactive oxygen species (ROS) in a concentration dependent manner. In the presence of an antioxidant, ascorbic acid, ROS production was diminished yet antifungal activity persisted, possibly indicating that ROS production is a secondary effect from membrane lysis caused by lipopeptide 13. The lipopeptide was non-haemolytic against mouse red blood cells at the highest tested concentration (1 mM).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2018.01.023DOI Listing

Publication Analysis

Top Keywords

antifungal activity
16
battacin lipopeptides
12
preformed biofilms
12
unexplored antifungal
8
mic 625 μm
8
mouse red
8
red blood
8
blood cells
8
biofilm colonisation
8
c albicans biofilms
8

Similar Publications

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

Multidrug resistance in the pathogenic fungus Candida glabrata is a growing global threat. Here, we study mechanisms of multidrug resistance in this pathogen. Exposure of C.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Cyclotides are a class of plant-derived cyclic peptides having a distinctive structure with a cyclic cystine knot (CCK) motif. They are stable molecules that naturally play a role in plant defense. Till date, more than 750 cyclotides have been reported among diverse plant taxa belonging to Cucurbitaceae, Violaceae, Rubiaceae, Solanaceae, and Fabaceae.

View Article and Find Full Text PDF

Current study investigates the medicinal applications of (Palash), the state flower of Jharkhand, India, focusing on synthesising biomodified copper oxide nanoparticles (CuO-NPs) and its antifungal properties. Flavonoid content in the flower extract was quantified by aluminium chloride colorimetric analysis. CuO-NPs were synthesised via co-precipitation method and then modified with methanolic flower extract.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!