Thyroid hormone (TH) is essential in numerous physiological functions and developmental processes. It acts through TH receptors (TRs) to regulate gene expression. The retina is the light-sensitive tissue lining the back of the eye and functions as the first step of the visual process. Rod and cone photoreceptors are specialized sensory neurons in the retina that initiate phototransduction. Rods are responsible for dim light vision, whereas cones are responsible for daytime vision, color vision, and visual acuity. TH signaling regulates retinal development and maintenance. The requirement of TH signaling is typically manifested as its regulation in the cone maturation and expression of the light-sensing pigment protein (cone opsin). There are two components of this regulation. First, TRβ2, a TH-activated transcription factor, is expressed in immature cones and regulates cone differentiation and cone opsin expression; activation of TRβ2 suppresses the expression of short-wave-sensitive opsin 1, induces the expression of medium-wave-sensitive opsin 1, and promotes dorsal-ventral opsin patterning. Second, hypothyroid mouse models display abnormalities in cone opsin expression, supporting the necessity of TH itself in retinal development. TH has been linked to photoreceptor survival. Excessive TH signaling leads to death of developing photoreceptors in healthy and diseased retina, whereas suppressing TH signaling preserves cones in mouse models of retinal degeneration. Some eye diseases, including age-related macular degeneration, have been associated with elevated circulation TH levels. Future work should aim to better understand how TH regulates retinal development, functionality, and survival, to examine the role of TH signaling in the pathogenesis of retinal degeneration, and to explore the potential of TH signaling manipulation for photoreceptor protection. Hopefully, these knowledge bases will lead to the identification of novel strategies for retinal disease prevention and management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.vh.2017.05.001 | DOI Listing |
PLoS One
December 2024
UCL Institute of Ophthalmology, London, United Kingdom.
Photoreceptors (PRs) are metabolically demanding and packed at high density, which presents a challenge for nutrient exchange between the associated vascular beds and the tissue. Motivated by the ambition to understand the constraints under which PRs function, in this study we have drawn together diverse physiological and anatomical data in order to generate estimates of the rates of ATP production per mm2 of retinal surface area. With the predictions of metabolic demand in the companion paper, we seek to develop an integrated energy budget for the outer retina.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada.
Endothelial cells and high glucose-induced endothelial dysfunction are the common origin of chronic diabetic complications such as retinopathy, nephropathy, and cardiomyopathy. Yet their common origins, the vascular manifestations of such complications are different. We examined the basal heterogeneity between microvascular endothelial cells(MECs) from the retina, kidneys, and heart, as well as their differential responses to hyperglycemia in diabetes.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
N-methylenadenosine (mA) modification, the most abundant epitranscriptomic modification in eukaryotic mRNAs, has been shown to play crucial roles in regulating various aspects of mRNA metabolism and functions. In this study, we applied the Cre-Loxp conditional knockout system to investigate the role of the core components of the mA methyltransferase complex, METTL14 and METTL3, in retinal development. Our results showed that the double absence of Mettl14 and Mettl3 caused structural disturbance in the retina and prolonged the proliferation activity of retinal progenitor cells.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2024
Department of Translational Biomedicine Neuroscience, University of Bari "Aldo Moro," Bari, Italy.
Purpose: The purpose of this study was o examine the optical coherence tomographic (OCT) characteristics of hyper-reflective foci (HRF) in patients with neovascular age-related macular degeneration (nAMD) and to assess the potential of HRF as a predictive factor for the development of macular atrophy following anti-vascular endothelial growth factor (anti-VEGF) therapy.
Methods: This was a retrospective analysis of 61 treatment-naïve eyes diagnosed with exudative AMD and type 1 macular neovascularization (MNV). The HRF was identified in the inner retina and outer retina layers, and the treatment response of HRF was documented.
Graefes Arch Clin Exp Ophthalmol
December 2024
Department of Pediatric Retina & Ocular Oncology, Aravind Eye Hospital & Postgraduate Institute of Ophthalmology, Avinashi Road, Coimbatore, 641 014, Tamil Nadu, India.
Background: To describe the spectrum, demographic profile and distribution of intraocular oncology cases; both benign and malignant, in pediatric population in India.
Methods: It was a retrospective study done at a tertiary care hospital over a period of seven years (January 2015- December 2022) which included all the children aged 0-16 years, clinically diagnosed as intraocular tumors (benign or malignant) referred to our Ocular Oncology clinic. The data was retrieved from medical records department as well as electronic medical system (EMR) system.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!