We evaluated the utility of the continuous measurement of vaginal temperature by a wireless sensor and wireless connection for predicting the onset of calving and for clarifying the relationships among dystocia, calf conditions, and temperature changes at a commercial beef cattle farm in Japan. A total of 625 effective delivery data was collected. The temperature sensor inserted to the vagina on 7 days before the expected due date and collected the vaginal temperature every 5 min. The sensor detected two alerts according to the temperature change, one was the vaginal temperature of 4 h moving average compared to the same time temperature of last two days decreased more than 0.4 °C (Alert 1) and the other was the rupture of the allantoic sac and the dropped sensor temperature reached to the ambient temperature (Alert 2). The detection rates of Alert 1 and Alert 2 were 88.3% and 99.4%, respectively. The average time between Alert 1 and Alert 2 (Time 1) was 22 h, and that between Alert 2 and delivery (Time 2) was 2 h. These results indicated that the continuous measurement of vaginal temperature is effective for predicting the calving time. The necessity of assistance was correlated with dystocia, calf birth weight (BW), sex, and gestation periods. Interestingly, the durations of Times 1 and 2 were also associated with dystocia. The calf BW, sex, and gestation periods affected the length of Time 2. Our findings indicate that the BW of the calf is the most important factor for dystocia risk, and that the continuous measurement of vaginal temperature could become a good indicator for predicting not only the onset of calving, but also the necessity of assistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2018.01.016 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!