The roles of ions on bone regeneration.

Drug Discov Today

Institute for Regenerative Engineering, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; The Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Medicine, Division of Endocrinology, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Department of Biomedical Engineering, University of Connecticut, School of Engineering, Storrs, CT 06268, USA; UConn Stem Cell Institute, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Orthopaedic Surgery, University of Connecticut Health Center, School of Medicine, Farmington, CT 06030, USA; Connecticut Institute for Clinical and Translational Science, University of Connecticut Health Center, Farmington, CT 06030, USA. Electronic address:

Published: April 2018

Bone scientists are actively investigating a range of methods to promote skeletal tissue regeneration. A review of recent literature has revealed that several ions are uniquely capable of inducing stem cell differentiation down desired lineages. There exists enormous promise for these ions to be used in bone regenerative medicine. Given that these ions can be released from biodegradable polymeric materials, their long-term delivery can be achieved through a variety of controlled-release strategies compared with the relatively few options available for expensive and fragile polypeptide-based growth factors. In this review, we highlight the developments in using ions in conjunction with biomaterials for bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2018.01.049DOI Listing

Publication Analysis

Top Keywords

ions bone
8
bone regeneration
8
roles ions
4
bone
4
regeneration bone
4
bone scientists
4
scientists actively
4
actively investigating
4
investigating range
4
range methods
4

Similar Publications

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

To investigate the effects of long non-coding RNA KLHL7-AS1 (LncRNA KLHL7-AS1) on the proliferation and apoptosis of nucleus pulposus cells under oxidative stress and its mechanisms. Human nucleus pulposus cells (HUM-iCell-s012) were divided into 4 groups, and unoxidized nucleus pulposus cells were transfected with an empty pcDNA vector (pcDNA-control) to serve as the blank control group. Based on previous studies on oxidative stress-induced nucleus pulposus cell senescence and preliminary experiments, oxidative stress was induced by treating nucleus pulposus cells with 400 μmol/L HO.

View Article and Find Full Text PDF

Preparation of Octacalcium Phosphate Thin Film with Exposing Reactive Crystalline Plane in Biological Fluid.

ACS Biomater Sci Eng

January 2025

Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan.

Octacalcium phosphate (OCP) has been used as a bone replacement material due to its higher bone affinity. However, the mechanism of affinity has not been clarified. Since the 100 crystalline plane of OCP is closely involved in the biological reactions during osteogenesis, it is important to expose the 100 crystalline plane of OCP to the biological fluid to precisely measure the interfacial reactions.

View Article and Find Full Text PDF

Physicochemical properties and biological interaction of calcium silicate-based sealers - in vivo model.

Clin Oral Investig

January 2025

Department of Restorative Dentistry - Endodontics, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil.

Objectives: To investigate volumetric changes, in vivo biocompatibility, and systemic migration from eight commercial endodontic sealer materials in paste/paste, powder/liquid, and pre-mixed forms.

Materials And Methods: The sealers AH Plus Bioceramic, AH Plus Jet, BioRoot RCS, MTApex, Bio-C Sealer, Bio-C Sealer Ion+, EndoSequence BC Sealer and NeoSEALER Flo were studied. After characterisation by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), Raman spectroscopy and X-ray diffractometry (XRD), tubes were implanted in Wistar rats' alveolar bone and subcutaneous tissues.

View Article and Find Full Text PDF

Enhancing osteogenic properties with gelatin/chitosan hydrogel encapsulating lithium-coated titanium oxide hollow sphere particles loaded with quercetin.

Biomed Mater

January 2025

Department of Emergency, Shandong University, Department of Emergency, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China, Jinan, Shandong, 250100, CHINA.

Metallic oxides especially lithium and titanium oxides are well known for their osteogenic properties. When combined in the right proportions, metallic oxides can have an even greater impact. However, releasing ions from oxides can lead to oxidative stress, which is harmful to cell growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!