The present research explored the role of the medial temporal lobes in object memory in the unique patient MR, who has a selective lesion to her left lateral entorhinal cortex. Two experiments explored recognition memory for object identity and object location in MR and matched controls. The results showed that MR had intact performance in an object location task [MR=0.70, controls=0.69, t(6)=0.06, P>0.05], but was impaired in an object identity task [MR=0.62, controls=0.84, t(6)=-4.12, P<0.05]. No differences in correct recollection or familiarity emerged. These results suggest a differential role of the entorhinal cortex in object recognition memory. The current research is therefore the first patient study to show the role of the lateral entorhinal cortex in object identity recognition and suggests that current medial temporal lobe theoretical models on both object and recognition memory require a theoretical re-think to account for the contributions of the entorhinal cortex in these processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/WNR.0000000000000974 | DOI Listing |
Hippocampus
January 2025
Cognitive Science Program and Department of Psychology, University of Arizona, Tucson, Arizona, USA.
Numerous scientific advances and discoveries have arisen from research on the hippocampal formation. This special issue provides first-person historical descriptions of these advances and discoveries in hippocampal research, written by those directly involved in the research. This is the first section of a special issue that will also include future articles on this topic.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China.
Successful navigation relies on reciprocal transformations between spatial representations in world-centered (allocentric) and self-centered (egocentric) frames of reference. The neural basis of allocentric spatial representations has been extensively investigated with grid, border, and head-direction cells in the medial entorhinal cortex (MEC) forming key components of a 'cognitive map'. Recently, egocentric spatial representations have also been identified in several brain regions, but evidence for the coexistence of neurons encoding spatial variables in each reference frame within MEC is so far lacking.
View Article and Find Full Text PDFIntroduction: Hippocampal hyperactivity is a hallmark of prodromal Alzheimer's disease (AD) that predicts progression in patients with amnestic mild cognitive impairment (aMCI). AGB101 is an extended-release formulation of levetiracetam in the dose range previously demonstrated to normalize hippocampal activity and improve cognitive performance in aMCI. The HOPE4MCI study was a 78-week trial to assess the progression of MCI due to AD.
View Article and Find Full Text PDFNat Commun
January 2025
Neurobiology Department, School of Biological Sciences, University of California, San Diego, CA, USA.
The hippocampal CA3 subregion is a densely connected recurrent circuit that supports memory by generating and storing sequential neuronal activity patterns that reflect recent experience. While theta phase precession is thought to be critical for generating sequential activity during memory encoding, the circuit mechanisms that support this computation across hippocampal subregions are unknown. By analyzing CA3 network activity in the absence of each of its theta-modulated external excitatory inputs, we show necessary and unique contributions of the dentate gyrus (DG) and the medial entorhinal cortex (MEC) to phase precession.
View Article and Find Full Text PDFBrain Commun
December 2024
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA.
Co-pathology is frequent in Lewy body disease, which includes clinical diagnoses of both Parkinson's disease and dementia with Lewy bodies. Measuring concomitant pathology can improve clinical and research diagnoses and prediction of cognitive trajectories. Tau PET imaging may serve a dual role in Lewy body disease by measuring cortical tau aggregation as well as assessing dopaminergic loss attributed to binding to neuromelanin within substantia nigra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!