Go with the Flow.

Med Clin North Am

Division of General Internal Medicine, Johns Hopkins University School of Medicine, 601 North Caroline Street, #7143, Baltimore, MD 21287, USA. Electronic address:

Published: March 2018

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcna.2017.12.002DOI Listing

Publication Analysis

Top Keywords

flow
4
flow
1

Similar Publications

Tongue Muscle Training App for Middle-Aged and Older Adults Incorporating Flow-Based Gameplay: Design and Feasibility Pilot Study.

JMIR Serious Games

January 2025

Department of Interaction Design, National Taipei University of Technology, Rm.701-4, Design Building, No.1, Sec.3, Chung-hsiao E. Rd, Taipei, 10608, Taiwan, 886 912-595408, 886 2-87732913.

Background: Complications due to dysphagia are increasingly prevalent among older adults; however, the tediousness and complexity of conventional tongue rehabilitation treatments affect their willingness to rehabilitate. It is unclear whether integrating gameplay into a tongue training app is a feasible approach to rehabilitation.

Objective: Tongue training has been proven helpful for dysphagia treatment.

View Article and Find Full Text PDF

Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling.

J Cereb Blood Flow Metab

January 2025

Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA.

Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g.

View Article and Find Full Text PDF

Progress on ancient DNA investigation of Late Quaternary mammals in China.

Yi Chuan

January 2025

State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China.

It has been more than 40 years since the beginning of exploring the genetic composition of ancient organisms from the perspective of ancient DNA. In the recent 20 years, with the development and application of high-throughput sequencing technology platforms and the improved efficiency of retrieving highly fragmented DNA molecules, ancient DNA research moved forward to a brand-new era of deep-time paleogenomics. It not only solved many controversial phylogenetic problems, enriched the migration and evolution details of various organisms including humans, but also launched exploration of the molecular responses to climate changes in terms of "whole genomic-big data-multi-species" level.

View Article and Find Full Text PDF

Over the past decade, the continuous development of ancient genomic technology and research has significantly advanced our understanding of human history. Since 2017, large-scale studies of ancient human genomes in East Asia, particularly in China, have emerged, resulting in a wealth of ancient genomic data from various time periods and locations, which has provided new insights into the genetic history of East Asian populations over tens of thousands of years. Especially since 2022, there emerged a series of new research progresses in the genetic histories of the northern and southern Chinese populations within the past 10,000 years.

View Article and Find Full Text PDF

Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!