A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A red-emitting indolium fluorescence probe for membranes - flavonoids interactions. | LitMetric

The red-emitting indolium derivative compound (E)-2-(4-(diphenylamino)styryl)-1,3,3-trimethyl-3H-indol-1-ium iodide (H3) was demonstrated as a sensitive membrane fluorescence probe. The probe located at the interface of liposomes when mixed showed much fluorescence enhancement by inhibiting the twisted intramolecular charge transfer state. After ultrasonic treatment, it penetrated into lipid bilayers with the emissions leveling off and a rather large encapsulation efficiency (71.4%) in liposomes. The ζ-potential and particle size measurement confirmed that the charged indolium group was embedded deeply into lipid bilayers. The probe was then used to monitor the affinities of antioxidant flavonoids for membranes. It was verified that quercetin easily interacted with liposomes and dissociated the probe from the internal lipid within 60 s under the condition of simply mixing. The assessment of binding affinities of six flavonoids and the coincident results with their antioxidation activities indicated that it was a promising membrane probe for the study of drug bio-affinities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.3449DOI Listing

Publication Analysis

Top Keywords

red-emitting indolium
8
fluorescence probe
8
lipid bilayers
8
probe
6
indolium fluorescence
4
probe membranes
4
membranes flavonoids
4
flavonoids interactions
4
interactions red-emitting
4
indolium derivative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!