Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cholesterol is doubtless one of the most studied bio-molecules, which unfortunately features low emitting properties, precluding its in vivo study by fluorescence experiments. The design of fluorescent analogues of cholesterol is thus an appealing challenge in biochemistry, which simultaneously requires minor changes in its chemical structure (to retain main biological properties) and considerable enhancement of light emission. To this aim, the photochemical behaviour of the native molecule has to be deeply understood. In this work, we focused our attention on the electronic absorption of cholesterol in several common organic solutions, combining experimental (through ultraviolet-visible and electronic circular dichroism spectroscopy) and theoretical approaches (at the time-dependent density functional theory level) in order to solve the important discrepancies previously reported in the literature on the maximum absorption wavelengths and on the nature (Rydberg and/or π → π*) of the associated electronic transition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp07713k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!