Genome editing with CRISPR/Cas9 is a promising new approach for correcting or mitigating disease-causing mutations. Duchenne muscular dystrophy (DMD) is associated with lethal degeneration of cardiac and skeletal muscle caused by more than 3000 different mutations in the X-linked dystrophin gene (). Most of these mutations are clustered in "hotspots." There is a fortuitous correspondence between the eukaryotic splice acceptor and splice donor sequences and the protospacer adjacent motif sequences that govern prokaryotic CRISPR/Cas9 target gene recognition and cleavage. Taking advantage of this correspondence, we screened for optimal guide RNAs capable of introducing insertion/deletion (indel) mutations by nonhomologous end joining that abolish conserved RNA splice sites in 12 exons that potentially allow skipping of the most common mutant or out-of-frame exons within or nearby mutational hotspots. We refer to the correction of DMD mutations by exon skipping as myoediting. In proof-of-concept studies, we performed myoediting in representative induced pluripotent stem cells from multiple patients with large deletions, point mutations, or duplications within the gene and efficiently restored dystrophin protein expression in derivative cardiomyocytes. In three-dimensional engineered heart muscle (EHM), myoediting of DMD mutations restored dystrophin expression and the corresponding mechanical force of contraction. Correcting only a subset of cardiomyocytes (30 to 50%) was sufficient to rescue the mutant EHM phenotype to near-normal control levels. We conclude that abolishing conserved RNA splicing acceptor/donor sites and directing the splicing machinery to skip mutant or out-of-frame exons through myoediting allow correction of the cardiac abnormalities associated with DMD by eliminating the underlying genetic basis of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5796795 | PMC |
http://dx.doi.org/10.1126/sciadv.aap9004 | DOI Listing |
Neuromuscul Disord
December 2024
Service de Neuromyologie, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France Institut de Myologie, Sorbonne Université, APHP, Paris, France. Electronic address:
Dysferlinopathies, caused by mutations in the dysferlin gene (DYSF) encoding the dysferlin protein, are a clinically heterogeneous group of autosomal recessive muscular dystrophies whose phenotypic spectrum is still evolving. Here we described a patient reporting diffuse muscular pain non related to physical exercise, mimicking fibromyalgic syndrome. Electroneuromyography was normal.
View Article and Find Full Text PDFNeuromuscul Disord
January 2025
Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Translational Medical Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
Fukuyama congenital muscular dystrophy (FCMD) is the second most common childhood-onset muscular dystrophy in Japan. However, only a few comprehensive studies have investigated cardiac complications associated with FCMD, with none on arrhythmias. The present study evaluated 78 Holter electrocardiograms from 15 patients with FCMD.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Stem Cell Institute, University of Minnesota Medical School, Minneapolis, MN, USA; Paul & Sheila Wellstone Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, MN, USA; Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:
Confocal imaging is a powerful tool capable of analyzing cellular spatial data within a given tissue. Here, we present a protocol for preparing optically cleared extensor digitorum longus (EDL) skeletal muscle samples suitable for confocal imaging/computational analysis. We describe steps for sample preparation (including perfusion fixation and tissue clearing of muscle samples), image acquisition, and computational analysis, with sample segmentation/3D rendering outlined.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile.
DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.
Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!