Bioprinting of skin constructs for wound healing.

Burns Trauma

1The Affiliated Hospital of Southwest Medical University, the department of Plastic & Burns Surgery, Tai Ping Street, Luzhou, 646000 People's Republic of China.

Published: January 2018

Extensive burns and full-thickness skin wounds are difficult to repair. Autologous split-thickness skin graft (ASSG) is still used as the gold standard in the clinic. However, the shortage of donor skin tissues is a serious problem. A potential solution to this problem is to fabricate skin constructs using biomaterial scaffolds with or without cells. Bioprinting is being applied to address the need for skin tissues suitable for transplantation, and can lead to the development of skin equivalents for wound healing therapy. Here, we summarize strategies of bioprinting and review current advances of bioprinting of skin constructs. There will be challenges on the way of 3D bioprinting for skin regeneration, but we still believe bioprinting will be potential skills for wounds healing in the foreseeable future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5778803PMC
http://dx.doi.org/10.1186/s41038-017-0104-xDOI Listing

Publication Analysis

Top Keywords

bioprinting skin
12
skin constructs
12
wound healing
8
skin
8
skin tissues
8
bioprinting
6
constructs wound
4
healing extensive
4
extensive burns
4
burns full-thickness
4

Similar Publications

Innovating chitosan-based bioinks for dermal wound healing: Current progress and future prospects.

Int J Biol Macromol

January 2025

Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; NanoBiotechnology & Regenerative Medicine Innovation Group, Noavarn Salamat ZHINO (PHC), Tehran, Iran. Electronic address:

The field of three-dimensional (3D) bio/printing, known as additive manufacturing (AM), heavily relies on bioinks possessing suitable mechanical properties and compatibility with living cells. Among the array of potential hydrogel precursor materials, chitosan (CS) has garnered significant attention due to its remarkable physicochemical and biological attributes. These attributes include biodegradability, nontoxicity, antimicrobial properties, wound healing promotion, and immune system activation, making CS a highly appealing hydrogel-based bioink candidate.

View Article and Find Full Text PDF

Skin-on-a-chip models provide physiologically relevant platforms for studying diseases and drug evaluation, replicating the native skin structures and functions more accurately than traditional 2D or simple 3D cultures. However, challenges remain in creating models suitable for microneedling applications and monitoring, as well as developing skin cancer models for analysis and targeted therapy. Here, we developed a human skin/skin cancer-on-a-chip platform within a microfluidic device using bioprinting/bioengineering techniques.

View Article and Find Full Text PDF

Revolutionizing Chronic Wound Treatment: Treating Bleomycin Intralesional Injection-Related Chronic Wounds with 3D Bioprinted Skin Substitutes.

J Invest Dermatol

January 2025

Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China. Electronic address:

View Article and Find Full Text PDF

Tissue engineering and regenerative medicine have made significant breakthroughs in creating complex three-dimensional (3D) constructs that mimic human tissues. This progress is largely driven by the development of hydrogels, which enable the precise arrangement of biomaterials and cells to form structures resembling native tissues. Gelatin-based bioinks are widely used in wound healing due to their excellent biocompatibility, biodegradability, non-toxicity, and ability to accelerate extracellular matrix formation.

View Article and Find Full Text PDF

A wound, defined as a disruption in the continuity of the skin, is among the most common issues in the population and poses a significant burden on healthcare systems and economies worldwide. Despite the countless medical devices currently available to promote wound repair and skin regeneration, there is a growing demand for new skin devices that incorporate innovative biomaterials and advanced technologies. Bioglasses are biocompatible and bioactive materials capable of interacting with biological tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!